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Abstract. In addition to the existing standards dedicated to representa-
tion or querying, Semantic Web programmers could really benefit from a
dedicated programming language enabling them to directly define func-
tions on RDF terms, RDF graphs or SPARQL results. This is espe-
cially the case, for instance, when defining SPARQL extension functions.
The ability to capitalize complex SPARQL filter expressions into exten-
sion functions or to define and reuse dedicated aggregates are real cases
where a dedicated language can support modularity and maintenance of
the code. Other families of use cases include the definition of functional
properties associated to RDF resources or the definition of procedural
attachments as functions assigned to RDFS or OWL classes with the
selection of the function to be applied to a resource depending on the
type of the resource. To address these needs we define LDScript, a Linked
Data script language on top of the SPARQL filter expression language.
We provide the formal grammar of the syntax and the Natural Seman-
tics inference rules of the semantics of the language. We also provide a
benchmark and perform an evaluation using real test bases from W3C
with different implementations and approaches comparing, in particular,
script interpretation and Java compilation.
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1 Introduction

RDF is the standard framework recommended by the W3C to represent and
exchange Linked Data on the Web. It is associated with RDF Schema and OWL
for ontology-based modelling on the semantic Web and with SPARQL for data
and ontology querying. The development of the Web of data opens up a wide
range of use cases where, in addition to the existing standards, Semantic Web
programmers would benefit from having a dedicated programming language en-
abling them to define functions on RDF terms or RDF graphs. This is the case,
for instance, when defining SPARQL extension functions implemented for a spe-
cial purpose and domain or application dependent. This would also be needed to
capitalize a complex SPARQL filter expression or the definition of special pur-
pose extension aggregates to be reused across queries or sub-queries. Another
kind of use cases is the definition of functional properties associated to RDF
resources, the results of which are computed on demand. For instance, the value



of the surface property of a rectangular object could be computed as the prod-
uct of the values of its width and length properties; the age of a person could
also be computed from her date of birth. These use cases can also be extended
to the definition of procedural attachments as functions assigned to RDFS or
OWL classes. The selection of the function to be applied to a resource can then
be made dependent on the types (classes) of the resource.

The requirements we propose for a programming language enabling such
definitions of functions are:

– The objects of the language are RDF terms (URIs, blank nodes and literals),
RDF triples and graphs as well as SPARQL query solutions. This is required
to facilitate the access and manipulation of Linked Data in their native
model without adding the burden of parsing, encapsulating, mapping, and
serializing in other programming languages.

– The statements of the language include SPARQL filter expressions and
SPARQL queries (the select and construct query forms). This is re-
quired to be able to directly leverage in the program these operations that
are tailored to Linked Data access and processing. Again, encapsulating and
mapping these operations to other programming paradigms can make them
clumsy and inefficient.

– The language provides function definition and function call. This is the core
motivation of our proposal to add all the needed primitives to program and
execute functions inside RDF frameworks.

– Functions can be exchanged and shared among Semantic Web plaforms and
are interoperable.

In this paper, we address the research question: Can we define a standard-
based programming language that meets the above described requirements? To
answer this question, we define LDScript, a Linked Data script language on top
of the SPARQL filter expression language, taking advantage of the fact that
the SPARQL filter expression language potentially enables users to express the
definitions of functions. We effectively define a programming language on top
of SPARQL filter expression language. Syntactically, it consists in a couple of
additional statements: a function statement enabling users to define functions
and a let statement enabling them to define local variables. We present the
syntax and semantics of LDScript as well as an implementation and we illustrate
the simplicity as well as the expressive power of this extension with real cases
of LDScript functions. We also provide a benchmark and we report the results
of an evaluation of LDScript using real test bases from W3C with different
implementations and approaches comparing, in particular, script interpretation
and Java compilation.

This article is based on an initial research report [4] and presents our scientific
contributions with the following plan. In Section 2 we present state-of-the-art
approaches to define extension functions. In Section 3 we introduce LDScript
with an overview of this language. In Section 4 we formally define the syntax
and semantics of LDScript. In Section 5 we study several use cases and we show



how they can easily be addressed by using LDScript. In Section 6 we evaluate
the efficiency of different implementations of LDScript on various test cases. In
Section 7 we conclude and draw some perspectives of our work.

2 Related work

Although no contribution so far has directly addressed the research question we
target in this paper, a number of previous works are somehow related to the issue.
SPIN is a W3C member submission which proposes a SPARQL-based rule and
constraint language and, additionally, enables one to represent both SPARQL
queries (SPIN templates) and SPARQL extension functions (SPIN functions) [6].
SPIN is represented in RDF. In SPIN, a SPARQL extension function is identi-
fied by a resource of type sp:Function (with sp the prefix denoting the SPIN
namespace) which is linked by property sp:body to its definition as a SPARQL
query of the form select or ask.

Jena provides a java URI scheme for naming and accessing SPARQL exten-
sion functions implemented in Java. This enables one to dynamically load the
bytecode implementing the function. By convention, the location of the Java
class must be found in the Java classpath and the local name of the function
must be the name of the Java class implementing it1. Here is an example of a
SPARQL query using an extension function f:myTest implemented in Java. It
filters the RDF triples for which f:myTest returns true when called with the
triple’s subject and object as parameters:

PREFIX f: <java:app.myFunctions.>

SELECT ?x WHERE { ?x ?p ?y FILTER f:myTest(?x, ?y) }

When compared to the above stated requirements for a Semantic Web program-
ming language, Jena relies only on Java for extension functions and the code
of the function has to deal with mappings from the Linked Data models and
syntaxes to the object oriented models and syntax of Java.

G. Williams [9] proposes to implement SPARQL extension functions in Java-
Script as an agreed-upon programming language, and to share implementations
among query engines by using an embedded JavaScript interpreter. Functions
are identified by URLs and their source code may be retrieved at run time by
dereferencing their URL. It relies on an RDF schema enabling one to describe a
SPARQL extension function and retrieve its source code at run time by deref-
erencing its URL. Here is an example of RDF statements describing a SPARQL
extension function to compute a geographical distance in kilometers. The loca-
tion of its JavaScript source code is the value of property ex:source (with ex

the namespace prefix of the extension function schema) and the function name
in the source code that should be called to execute the extension function is the
value of property ex:function.

1 https://jena.apache.org/documentation/query/writing_functions.html
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<http://example.com/functions/distance> a ex:Function;

dc:description "Geographic distance in km";

ex:source <http://example.com/distance.js>;

ex:function "gdistance" .

When compared to our proposed requirements, the code of the function has to
deal with mappings from the Linked Data models and syntaxes to the object
oriented model and syntax of JavaScript.

M. Atzori [1] proposes to implement SPARQL extension functions based on
both a generic extension function wfn:call and the SPARQL service clause.
Function wfn:call is similar to the Lisp funcall function and takes the ex-
tension function to be evaluated as its first argument. Any occurrence of the
wfn:call function is replaced by a service call to delegate the evaluation of
the extension function to the SPARQL endpoint implementing the function. The
SPARQL endpoint’s IRI is computed from the extension function’s IRI, based
on a Function-to-Endpoint IRI pattern. When compared to the requirements
for a Semantic Web programming language, this proposal does not provide a
language but rather an RPC-like hook to call functions that have to be hosted
and executed in a separate server process.

When compared to these four state-of-the-art proposals, the key idea of our
proposal described in the following is to extend the SPARQL language, and
more precisely its filter language, in order to enable the definition of extension
functions in the SPARQL filter language itself and using its native syntax. With
LDScript we propose a self-contained and Linked Data oriented programming
language for extension functions.

Relatedly, SPARQL-Generate [7] also extends SPARQL with a few constructs
with the specific target of enabling the generation of RDF from heterogeneous
sources. It is a template language whereas our proposal is a programming lan-
guage. In fact we could emulate SPARQL-Generate with LDScript and STTL
SPARQL Template Transformation Language [3].

PL/SQL2 is a programming language that is tightly integrated with the SQL
query language for relational databases. LDScript is designed with similar goals
but for triple stores.

Finally, it must be noted that Prolog may be worth considered for entailments
purpose which is not the topic of this work.

3 Overview of LDScript

Our goal is to define functions, the objects of which are Linked Data enti-
ties (URI, RDF literals, RDF triples, etc.) with the main objective of defining
SPARQL extension functions and possibly extend SPARQL itself. One possi-
bility is to rely on an existing programming language, e.g. Java, and use the
specific API of the SPARQL implementation of the RDF entities. However, this
approach has several weaknesses. First, it is not interoperable because other

2 http://www.oracle.com/technetwork/database/features/plsql/



SPARQL implementations of RDF entities do not use the same API. Hence, the
functions cannot be reused across different SPARQL implementations. Second,
one does not benefit of SPARQL native function library dedicated to RDF terms
(functions isURI, isBlank, isLiteral, datatype, strdt, strlang, langMatch,
uri, bnode, etc.) Third, one must switch back and forth from SPARQL to (e.g.)
Java environments with their compiler, project management environment, etc.,
and link the compiled functions to the SPARQL interpreter.

Another possibility would be to design a specific programming language the
object of which would be RDF entities with a library implementing SPARQL
functions. The weakness of this approach would be that users would have to
learn yet another programming language.

We propose LDScript, a third way that reconciles the above two approaches:
a programming language whose objects are RDF entities, SPARQL compatible
and embedding the complete SPARQL function library.

LDScript primarily relies on the SPARQL filter expression language. A SPARQL
filter is either (a disjunction or conjunction of) a relational expression or a call to
a built-in or externally defined boolean function. Among the built-in SPARQL
functions stands the if ternary function which evaluates the first argument and
returns the value of the second argument if the first argument results in an ef-
fective value of true, or else the value of the third argument. A SPARQL filter
restricts the solutions of a graph pattern matching to those satisfying the con-
straint it expresses: the filtered solutions result in the boolean value true when
substituted into the filter expression.

We propose to define functions by taking advantage of the fact that the
SPARQL filter language enables users to define expressions. Handbooks of pro-
gramming languages explain that typical programming languages include as
commands: variables declaration, assignment, call, return, sequential blocks, it-
erative commands and if statements. For this reason, in this section we will
introduce the corresponding statements in LDScript. LDScript primitives are
also directly descending from the historical definitions of function and function
definition as introduced by John McCarthy [8].

Here are the namespaces and prefixes used in the definitions:

prefix xt: <http://ns.inria.fr/sparql-extension/>

prefix us: <http://ns.inria.fr/sparql-extension/user/>

prefix rq: <http://ns.inria.fr/sparql-function/>

prefix dt: <http://ns.inria.fr/sparql-datatype/>

prefix ex: <htp://example.org/>

3.1 LDScript Function Definition

In LDScript, a function definition starts with the function keyword. The first
argument of the declaration is the name (a URI) of the function being defined
followed by its argument list. The variables in the argument list play the usual
role of function arguments. The second argument is the body of the function



being defined. It is an LDScript expression or a sequence of expressions. For ex-
ample, the factorial function us:fac is defined as follows, by using the SPARQL
if built-in function and embedding a recursive call:

FUNCTION us:fac(?n) {

IF (?n = 0, 1, ?n * us:fac(?n - 1)) }

Here is another example of function definition. A call to the us:status function
returns the status (married or single) of the resource given as parameter. Its
definition uses the SPARQL built-in if function and exists operator.

FUNCTION us:status(?x) {

IF (EXISTS { ?x ex:hasSpouse ?y } || EXISTS { ?y ex:hasSpouse ?x },

ex:Married, ex:Single) }

A call to a defined function returns the result of the evaluation of its body,
with its arguments bound by the function call. In the body, the arguments are
local variables in the sense that the variable bindings are local to the body of
the function and exist only during the execution of the function. For instance,
according to its above definition, a call to function us:fac will return the value
returned by a call to the if SPARQL built-in function form, with a given value
for variable ?n.

The language for defining the body of a function is LDScript, i.e. the SPARQL
filter expression language extended with statements presented in this document.
Hence, to define extension functions, LDScript programmers can make use of
the expressivity of the whole SPARQL filter expression language. In particular,
this includes built-in SPARQL functions, among which the if function form
enabling to consider alternatives, and the exists operator to test the existence
of graph patterns. This also includes extension functions defined in LDScript or
externally defined in another language (as SPARQL allows it). LDScript provides
overloading in the sense that it enables users to define several functions with the
same name and a different number of arguments.

For example, the SPARQL query below comprises the definition of function
us:fac in a function clause and the where clause embeds a call to this func-
tion to search the resources whose income is greater or equal to 10! = 3,628,800.

SELECT ?x ?i

WHERE { ?x ex:income ?i FILTER (?i >= us:fac(10)) }

FUNCTION us:fac(?n) { IF (?n = 0, 1, ?n * us:fac(?n - 1)) }

3.2 Local Variable Declaration

LDScript function definitions can embed local variable declarations. These are
expressed in a let statement. Its first argument declares a local variable and
its value; its second argument is an expression which is evaluated with the tran-
sient binding of the local variable declared. After completion of the expression
evaluation, the binding vanishes. The result of a let statement is the result of



its second argument. For instance, the example let statement below returns the
pretty-printing of the current date, e.g. "29/01/2017".

LET (?n = now()) { concat(day(?n), "/", month(?n), "/", year(?n)) }

A let statement can also execute a SPARQL query in its first argument and
bind the select variables with the first query solution. For instance, the following
function uses a let statement to return the first retrieved type of a resource.

FUNCTION us:type(?s){ LET (SELECT ?t WHERE {?s a ?t}){ ?t }}

An alternative syntax enables users to explicit the (subset of) variables to be
bound. The binding of the variables of the let statement is done by name (not
by position).

FUNCTION us:type(?s){ LET (((?t)) = SELECT ?t WHERE {?s a ?t}){?t}}

3.3 Loop Statements

In order to iterate a statement on the elements of a list of values, LDScript is
provided with the for loop statement. As an example, the following function
iteratively calls the xt:display function on the prime numbers among a given
list of natural numbers.

FOR (?n IN xt:list(1, 2, 3, 4, 5)) {

IF (us:prime(?n)) { xt:display(?n) } }

The for statement can iterate on the results of a SPARQL select or con-
struct query. In the case of a construct query, it iterates on the triples of
the graph. For instance, the following function iteratively calls the xt:display

function on RDF triples of the form <URI> a foaf:Person.

FOR ((?s, ?p, ?o) IN CONSTRUCT WHERE { ?x a foaf:Person }) {

xt:display(?s, ?p, ?o) }

Note that there are a lot of possibilities to integrate queries as expressions.
We have chosen a generic principle that matches let/for statements and se-
lect/construct queries with the same design pattern. In addition this choice
has the advantage of being generalizable to other objects such as lists, triples
and graphs:

FOR ((?fst, ?snd) IN ?listOfPairs)

LET ((?s, ?p, ?o) = ?triple)

The model and the implementation take such objects as solution mappings
and graphs into account. They are implemented using a pointer datatype, that is
a kind of blank node pointing to an object. As a blank node it can pass through
all statements. As a pointer, it is exploited by pattern matching expressions like
in the above let and for statements.



3.4 Function Evaluation

LDScript is provided with the funcall function to call a function whose name
is dynamically computed. For instance, the following example retrieves the name
of the appropriate us:surface method and applies it to argument ?x.

FUNCALL(us:method(us:surface, ?x), ?x)

LDScript is provided with the apply function to iteratively call a binary
function on a list of arguments. For example, the following function call enables
to compute the sum of the elements of a list of numbers with the binary rq:plus

function.

APPLY(rq:plus, xt:list(1, 2, 3, 4, 5))

3.5 List Datatype

LDScript is provided with a dt:list datatype to manage lists of values. A
dt:list datatype value is a list whose elements are RDF terms: URIs, literals,
blank nodes or sublists of type dt:list. The elements of a list need not be of
the same kind, neither of the same datatype. The dt:list datatype comes with
a set of predefined functions among which xt:size returns the size of the list,
xt:get returns the nth element, xt:sort sorts the list according to the order
by rules of SPARQL, xt:iota returns the list of n first integers, xt:cons adds
an element to the head of the list, etc.

The maplist function enables one to apply a function to the elements of a
list and return the list of the results. For instance, the call to function maplist
shown below returns the list of the results of the calls to function us:fac on the
first ten integers.

MAPLIST(us:fac, xt:iota(10))

There are several variants of the maplist function: map applies a function and
returns true, mapselect returns the list of elements such that the boolean
function returns true.

4 LDScript Formal Definition

The previous section gave an overview of LDScript. In this section we formally
define the syntax and semantics of this language.

4.1 LDScript Syntax

LDScript grammar is based on SPARQL3. The definition of BuiltInCall is
extended with let, for, map, funcall and apply statements.

3 http://www.w3.org/TR/sparql11-query/#grammar
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Function ::= ’FUNCTION’ iri (’()’ | VarList) Body

Body ::= ’{’ ’}’ | ’{’ Expression (’;’ Expression)* ’}’

VarList ::= ’(’ Var (’,’ Var)* ’)’

BuiltInCall ::= SPARQL_BuiltInCall | IfThenElse

| ’LET’ ’(’ (Decl (’,’ Decl) * | SelectQuery) ’)’ Body

| ’FOR’ ’(’ (VarOrList ’IN’ ExpQuery | SelectQuery) ’)’ Body

| Map ’(’ iri ’,’ Expression ’)’

| ’funcall’ ’(’ Expression (’,’ Expression)* ’)’

| ’apply’ ’(’ iri ’,’ Expression ’)’

IfThenElse ::= ’IF’ ’(’ BuiltInCall ’)’ Body

( ’ELSE’ ( Body | IfThenElse ) ) ?

Decl ::= VarOrList2 ’=’ ExpQuery

VarOrList ::= Var | VarList

VarOrList2 ::= VarOrList | ’(’ VarList ’)’

ExpQuery ::= Expression | SelectQuery | ConstructQuery

Map ::= ’MAP’ | ’MAPLIST’ | ’MAPSELECT’

4.2 LDScript Semantics

As usually done for programming languages, we formally defined the semantics
of the core of LDScript by a set of Natural Semantics inference rules [5]. These
rules enable us to define the semantics of the evaluation of the expressions of
the language in an environment with variable bindings. The bottom of the rule
is the conclusion and the top is the condition. The ` symbol states that the
expression on the right side is evaluated in the environment given on the left
side. The → symbol represents the evaluation of the expression on the left side
into the value on the right side. An environment is a couple (µ, ρ) where µ is
the basic graph pattern (BGP) solution mapping and ρ represents local variable
bindings. In addition, the environment must contain a reference to the SPARQL
dataset, which is not detailed hereafter.

Rule 1 states that local variables are evaluated within ρ which is managed
as a stack, latest variable binding first; rule 2 states that global variables are
evaluated within µ which is a BGP solution. Rules 3 and 4 specify the evaluation
of function calls. The ⇒ symbol represents a function definition lookup for the
function name on the left side. The solution mapping environment is empty
during function body evaluation: there are no global variables. Each function call
creates a fresh environment with function parameters (if any) as local variables.
Rule 5 specifies the evaluation of the let clause which declares a local variable to
be added to environment ρ. Hence, a declared local variable may hide a function
parameter or a BGP variable. BGP variables are accessible in a let statement
(e.g. in a filter), but recall that, inside a function body, the µ environment is
empty. Rules 6 & 7 specify the evaluation of a let clause with a SPARQL
query of the select form which binds the variables of the select clause and
evaluates the expression. Rule 8 specifies the evaluation of the for statement
by evaluating the first expression that returns a list of values and then binds
the variable successively with each element of this list and evaluates the second



expression with each local binding. Since this statement does not compute a
result in itself, it always returns true. Rules 9, 10, 11, 12, and 13 specify map,
funcall and appy statements. Rule 14 specifies the evaluation of an LDScript
expression. The semantics is that of standard SPARQL expression evaluation,
except that the overall environment comprises an environment for local variables
in addition to the standard environment for BGP variables.

µ, ρ[x = v] ` x → v
(1) x /∈ ρ

µ[x = v], ρ ` x → v
(2)

f() ⇒ f() = body ∧ ∅, ∅ ` body → res

µ, ρ ` f() → res
(3)

f(e1, ... en) ⇒ f(x1, ... xn) = body
∀i ∈ {1..n} µ, ρ ` ei → vi
∅, [x1 := v1; ... xn := vn] ` body → res

µ, ρ ` f(e1, ... en) → res
(4)

µ, ρ ` e1 → v1 ∧ µ, ρ [x := v1] ` e2 → res

µ, ρ ` let(x = e1, e2) → res
(5)

µ, ρ ` query → {µ1} ∪Ω
µ, ρ.µ1 ` exp → v

µ, ρ ` let(query, exp) → v
(6)

µ, ρ ` query → ∅
µ, ρ ` exp → v

µ, ρ ` let(query, exp) → v
(7)

µ, ρ ` e → (v1, ...vn)
∀i ∈ {1..n} µ, ρ [x := vi] ` b → ri

µ, ρ ` for(x = e, b) → true
(8)

µ, ρ ` e → (v1, ..vn)
∀i ∈ {1..n} µ, ρ ` f(vi) → ri

µ, ρ ` map(f, e) → true
(9)

µ, ρ ` e → f ∧ µ, ρ ` f(e1, ..en) → v

µ, ρ ` funcall(e, e1, ..en) → v
(10)

µ, ρ ` e → (v1, ..vn)
µ, ρ ` apply(f, (v1, ..vn)) → v

µ, ρ ` apply(f, e) → v
(11)

µ, ρ ` f() → v

µ, ρ ` apply(f, ()) → v
(12)



µ, ρ ` apply(f, (v2, ..vn)) → r
µ, ρ ` f(v1, r) → v

µ, ρ ` apply(f, (v1, ..vn)) → v
(13)

sparql(µ, ρ ` exp → v)

µ, ρ ` exp → v
(14)

The above described Natural Semantics inference rules defining the semantics
of the evaluation of LDScript expressions should be completed with the Natural
Semantics inference rules defining the semantics of the evaluation of SPARQL
queries within LDScript. These should be written according to section 18.6 of
the SPARQL recommendation4.

5 Examples of Use Cases

In this section, we present the definition of several LDScript extension functions
showing the expressive power and usability of the language. Some additional
examples can be found at: http://ns.inria.fr/sparql-extension.

5.1 Extended Aggregates

LDScript enables programmers to simply define extended aggregates with a sim-
ple extension of the SPARQL interpreter. We introduce the aggregate function
which is as an additional generic aggregate. This function takes as arguments
an expression (e.g. ?v in the example below) and aggregates the results of the
expression into a dt:list. Then we can call a custom aggregation function with
this list as argument. The example below defines sort concat, a variant of the
group concat aggregate which sorts the elements before concatenation occurs.
The rq prefix and namespace are used to assign a URI to each SPARQL standard
function, hence rq:concat function is SPARQL concat function.

SELECT (aggregate(?v) AS ?list) (us:sort_concat(?list) AS ?res)

WHERE { ?x rdf:value/rdf:rest*/rdf:first ?v }

FUNCTION us:sort_concat(?list){ apply(rq:concat, xt:sort(?list)) }

5.2 Procedural Attachment

LDScript enables programmers to perform procedural attachment to RDF re-
sources. The idea is to annotate the URI of a function to declare that it is
a method associated to a class. In the example RDF annotation below, two
functions are described, us:surfaceRectangle and us:surfaceCircle which
compute surfaces; it states that they implement the method us:surface for
us:Rectangle and us:Circle respectively.

4 https://www.w3.org/TR/sparql11-query/#sparqlAlgebraEval
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us:surfaceRectangle a xt:Method ; xt:name us:surface ;

xt:input (us:Rectangle) ; xt:output xsd:double .

us:surfaceCircle a xt:Method ; xt:name us:surface ;

xt:input (us:Circle) ; xt:output xsd:double .

Then, the method us:surface can be called on a resource as follows, without
mentioning its type:

SELECT * (funcall(xt:method(us:surface, ?x), ?x) as ?m)

WHERE { ?x a us:Figure }

The xt:method function is defined below. It retrieves the function ?fun imple-
menting the method ?m by finding the type ?t of the resource (line 3) and then
finding a method attached to the type, or a superclass of the type (line 4). In the
latter case, this implements method inheritance following the rdfs:subClassOf

relation.

01 FUNCTION xt:method(?m, ?x){

02 LET (SELECT * WHERE {

03 ?x rdf:type/rdfs:subClassOf* ?t .

04 ?fun a xt:Method ; xt:name ?m ; xt:input(?t)})

05 { ?fun } }

Finally, the methods us:surfaceRectangle and us:surfaceCircle are defined
as follows:

FUNCTION us:surfaceRectangle(?x){

LET (SELECT * WHERE {?x us:width ?w ; us:length ?l})

{ ?w * ?l } }

FUNCTION us:surfaceCircle(?x){

LET (SELECT * WHERE {?x us:radius ?r})

{ 3.14159 * power(?r, 2) } }

Below are some RDF descriptions of figures for which we can now compute the
surface using the above defined procedural attachment.

us:Circle rdfs:subClassOf us:Figure .

us:Rectangle rdfs:subClassOf us:Figure .

us:cc a us:Circle ; us:radius 1.5 .

us:rr a us:Rectangle ; us:width 2 ; us:length 3 .

5.3 Calendar

We wrote LDScript functions to compute the weekday of a date literal of type
xsd:date5 and functions to generate a calendar given a year6. We designed a

5 http://ns.inria.fr/sparql-extension/calendar
6 http://corese.inria.fr/srv/template?transform=st:calendar
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dynamic Web page generated from DBpedia events where events of a given year
are placed into the calendar7. The performance of LDScript is such that the Web
page is computed and displayed in real time.

5.4 SHACL

As part of a SHACL validator, we wrote an interpreter for W3C SHACL Property
Path language8. This real use case shows that LDScript enables users to write
such programs in a few lines: the function below recursively rewrites a property
path shape expression ?pp as an LDScript list.

FUNCTION sh:path(?shape, ?pp){

LET (SELECT ?shape ?pp ?q ?path WHERE {

GRAPH ?shape {

# rdf:rest is for a sequence

values ?q {

sh:inversePath sh:alternativePath

sh:zeroOrMorePath sh:oneOrMorePath

sh:zeroOrOnePath rdf:rest }

?pp ?q ?path } } ) {

IF (! bound(?q)){

IF (isURI(?pp)){ ?pp } ELSE { error() }}

ELSE IF (?q = rdf:rest) {

xt:list(sh:sequence, sh:list(?shape, ?pp)) }

ELSE { xt:list(?q, sh:path(?shape, ?path)) } } }

6 Implementation and Evaluation

We implemented LDScript using the SPARQL interpreter of the Corese Semantic
Web Factory [2]. The function, let and other statements are implemented by
the SPARQL parser, compiler and interpreter. Should an error occur, function
evaluation resumes in error mode, according to the same model as SPARQL
evaluation error: in a filter, the filter fails; in a select or a bind clause, “the
variable remains unbound for that solution but the query evaluation continues”9.

6.1 Generic Evaluation and Validation

LDScript has been validated on the functions described in Section 5 and exten-
sively used in several STTL transformations on a server available online10 [3].
We measured the performance of our implementation of LDScript on the exe-
cution of (1) a recursive Fibonacci function to test an exponential number of

7 http://corese.inria.fr/srv/template?profile=st:calendar3
8 http://ns.inria.fr/sparql-extension/datashape
9 http://www.w3.org/TR/2013/REC-sparql11-query-20130321/#assignment

10 http://corese.inria.fr

http://corese.inria.fr/srv/template?profile=st:calendar3
http://ns.inria.fr/sparql-extension/datashape
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/#assignment
http://corese.inria.fr


calls, (2) on the Bubble sort algorithms to evaluate loops and (3) on statistics
functions for the calculation aspect. We compared with Java and JavaScript im-
plementations which, of course, benefit from many years of optimizations. The
goal of this first evaluation was just to show that a direct implementation on
top of a SPARQL engine without dedicated optimizations is already usable. The
results are shown using a logarithmic scale in figure 1. The extension function
fib implements the Fibonacci sequence. The computation of fib(35) = 9227465
on a HP EliteBook laptop takes 3650 ms in LDScript, 68.8 ms in JavaScript and
24.9 ms in Java.

FUNCTION us:fib(?n) {

IF (n <= 2, 1, us:fib(?n - 2) + us:fib(?n - 1)) }

Bubble sort on an array of 1000 items takes 580.1ms in LDScript, 6ms in
JavaScript and 9.5ms in Java. Three statistic functions together (average, me-
dian and standard deviation) on an array containing 100000 integer values take
157.1 ms in LDScript, 80.5 ms in JavaScript and 6.9 ms in Java.

Fig. 1. Comparison of mean times and their mean absolute differences for JavaScript
(JS), Java and LDScript (LDS) computing recursive Fibonacci (-Fib in Blue), Bubble
sort (-Bub in green) and statistics (-Stat in red) using a logarithmic scale.

The above described first implementation of LDScript is a proof of concept
where we focused on the design and the semantics. Although focusing on perfor-
mance is future work, we already took the first step of providing and comparing
alternative implementations, as described in the following.

6.2 Java Compiling and Specific Evaluation

In addition to LDScript interpreter, we have written a compiler from LDScript
to Java. This enables us, among other things, to evaluate the performance of the
LDScript interpreter compared to the equivalent Java code. We have compared
performances on three LDScript programs with different programming charac-
teristics (e.g. recursive calls) as well as a full implementation of the SHACL



standard as a real use case. We therefore have four programs for this last eval-
uation: the recursive Fibonacci function, a calendar function that computes the
weekday of a given date, a parser of Roman to Arabic numbers and reverse, and
a SHACL validator. As a result, the execution time of the compiled Java code is
higher than pure Java because the compiled code operates on RDF terms with
XSD datatypes whereas a native Java code would operate on Java datatypes.
Our experiments show that the LDScript interpreter can be as fast as the Java
code produced by the LDScript compiler and sometimes slightly faster. One ex-
ception is the generated Java code for the Fibonacci function which is much
more efficient, e.g. by a factor of 20 for fib(35). This is due to the optimized
implementation of function call and recursion in Java. For the three other use
cases, the performances of the LDScript interpreter and the Java code are equiv-
alent. For the SHACL validator, we have tested it on the 97 SHACL test cases
from W3C. The Java code runs in 5.2 seconds while the LDScript interpreter
runs in 4.93 seconds (average time of ten runs after warmup on an HP laptop).
The Java source code is 3220 lines and 37055 bytes, the LDScript source code is
2009 lines and 17819 bytes. The complete codes, the evaluation report and the
table of performance are documented and available online11.

7 Conclusion and Future Work

Dedicated programming language enabling Semantic Web programmers to de-
fine functions on RDF terms, triples and graphs or SPARQL query results can
facilitate the development and improve the reuse and maintenance of the code
produced for Linked Data. To address these needs we detailed in this article a
lightweight extension of SPARQL filter expression language to enable the defi-
nition of extension functions and we defined a Linked Data script language on
top of the SPARQL filter expression language. Compared to the state-of-the-art
we directly extend the SPARQL language in order to enable the definition of
extension functions in the SPARQL language itself and using its native syntax,
building on a well-known and widely accepted component of the Web of data.
The key point of our proposal is that a programming language can easily be
integrated in SPARQL to define extension functions.

LDScript has all the features of Turing-complete programming languages:
constants, lists, variables, expressions, boolean connectors, if-then-else, iteration,
local variable definition, function definition, function call, recursion. LDScript
is a programming language where values are RDF terms, hence its use to de-
fine extension functions avoids to cast datatype values from RDF to the target
language (e.g. Java) and back. It enables us to associate function definitions di-
rectly to a SPARQL query, with no need to compile nor link code. All standard
SPARQL functions are natively available in LDScript and can be used directly in
a LDScript function definition. LDScript extends the SPARQL filter expression
language with several classical programming statements, among which func-
tion, let, for, funcall and apply. The select and construct SPARQL

11 http://ns.inria.fr/sparql-extension/example/table.html
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query forms are also statements of LDScript and can be used as well in the defi-
nition of functions. In addition, the language provides recursion, hence enabling
recursive SPARQL queries: a function can execute a SPARQL query that can
call the function. An LDScript interpreter is implemented in the Corese Semantic
Web Factory as well as a compiler of LDScript into Java and the performances
of the LDScript interpreter have been demonstrated on generic and concrete
test cases. We successfully implemented several use cases with LDScript, among
which a SHACL validator.

As future work, we will work on type checking function definition. LDScript
indeed needs a type analysis because several new constructs have implicit type
constraints: for example, the expression argument in Map must be list-valued; the
first argument of funcall must be URI-valued. We also intend to extend higher
order functions application to predefined functions. In the current version, higher
order functions operate only on LDScript user-defined functions. On another
note, we will work on the improvement of the performance of our implementation,
and plan to provide a second implementation of LDScript on another triple store
to validate the language. Finally, we plan to investigate the notion of “Linked
Functions” and go further in the definition of a function programming language
for SPARQL. The principle would consist in (1) dereferencing a function URI to
get the function definition, provided security rules on function namespaces, and
(2) annotating function URIs in the spirit of Linked Data.
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