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Abstract. Privacy audit logs are used to capture the actions of partic-
ipants in a data sharing environment in order for auditors to check com-
pliance with privacy policies. However, collusion may occur between the
auditors and participants to obfuscate actions that should be recorded
in the audit logs. In this paper, we propose a Linked Data based method
of utilizing blockchain technology to create tamper-proof audit logs that
provide proof of log manipulation and non-repudiation. We also provide
experimental validation of the scalability of our solution using an existing
Linked Data privacy audit log model.
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1 Introduction

Protecting the privacy of individuals who contribute their data to a collabora-
tive service or research environment is becoming more challenging. This becomes
apparent as an individual’s personal information is passed between different orga-
nizations that might operate under different jurisdictions and governing bodies.
Data sharing agreements (DSA) are legally binding documents established be-
tween organizations that detail the policies and conditions related to the sharing
of personal data [1]. The scenario in Fig. 1 demonstrates a collaborative research
environment where the research teams must comply with the DSAs and are mon-
itored for their compliance through the use of privacy audit logs. Auditors are
responsible for checking compliance with the DSA by examining the privacy logs
generated by the research teams [2].

In the scenario in Fig. 1, there is a problem in the trust placed in an auditor
and the audit log itself. If the auditor works for the organization that they are
auditing then the quality of the audit depends on influencing factors between
the organization and the auditor [3]. Collusion can occur between individuals in
the organization, such as researchers in the research teams, and the auditor to
obfuscate or modify the integrity of the generated logs. The resulting degraded
trust placed in the auditing process is a problem that needs to be solved in order
to prove that organizations are responsible for privacy breaches resulting from
non-compliant actions or to prove that they are compliant with the policies.
In order to combat the potential modification of the logs due to collusion, a
mechanism to provide tamper-proof audit logs is needed [3,4].
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Fig. 1: Example privacy auditing scenario in a data sharing environment [5]

In this paper, we propose a Linked Data-based [6] model for creating tamper-
proof privacy audit logs and provide a mechanism for log integrity and authen-
ticity verification that auditors can execute in conjunction with performing com-
pliance checking queries. The Linked Data-based L2TAP (Linked Data Log to
Transparency, Accountability, and Privacy) audit log framework [5] is used as the
underlying log framework. We leverage theories and technologies stemming from
blockchain technology [3,4,7,8,9], Linked Data graph signatures [10,11,12,13],
and Linked Data graph digest computation [12,14] to create non-repudiable log
events and utilize the distributed and immutable properties of blockchain tech-
nology to make the audit logs tamper-proof. We experimentally verify that the
log integrity verification process scales linearly.

The structure of the paper and the contributions of our work are as follows.
Section 2 presents how privacy audit logs are generated and the design require-
ments of our model. Our solution to generate tamper-proof privacy audit logs
is described in Sect. 3. Section 4 presents a SPARQL-based solution to perform
log integrity verification. In Sect. 5, the results of an experiment to validate the
scalability of our method is given. Section 6 provides an investigation of the
related work. Concluding remarks are discussed in Sect. 7.

2 Characteristics of Tamper-proof Privacy Logs

Privacy auditing addresses three characteristics of information accountability:
validation, attribution, and evidence [15,16]. Validation verifies a posteriori if a
participant has performed the tasks as expected, whereas attribution and evi-
dence deal with finding the responsible participants for non-compliant actions
and producing supporting evidence, respectively [15,16]. To address these char-
acteristics, privacy audit logs need to capture events with deontic modalities,
such as capturing privacy policies, purpose of data usage, obligations of parties,
and data access activities. A privacy audit log generation process is depicted in
Fig. 2a. The process is composed of a logger producing log events of promised
and performed privacy acts and storing them in an audit log accessible to audi-
tors. The logger generates multiple privacy log events (e1 to en) over time (e.g.,
expressing privacy policies, requesting access and access activities). An auditor
can then perform compliance queries against the audit log to determine if the
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(a) Privacy audit log generation pro-
cess

(b) Tamper-proof log generation process

Fig. 2: Privacy audit log generation comparison

performed acts are in compliance with the polices in the governing DSA (e.g.,
the scenario in Fig. 1) [5].

There are a number of proposals on logs for supporting privacy auditing
[18,19,20]. In this research, we utilize the L2TAP privacy audit log because it
provides an infrastructure to capture all relevant privacy events and provides
SPARQL solutions for major privacy processes such as obligation derivation and
compliance checking [5]. The L2TAP model follows the principles of Linked Data
to publish the logs. By leveraging a Linked Data infrastructure and expressing
the contents of the logs using dereferenceable URIs, the L2TAP audit log sup-
ports extensibility and flexibility in a web-scale environment [5]. In this research
we extend the L2TAP ontology to support non-repudiation and log event in-
tegrity.

2.1 Tamper-proof Privacy Audit Log Desiderata

An event in a privacy audit log needs to be non-repudiable so that the per-
formed act cannot be denied and the authenticity of the event can be provably
demonstrated. For example, in the scenario in Fig. 1, if an auditor determines
that the researchers have performed non-compliant actions, there is no provable
method of holding the researchers accountable for their performed acts. Further-
more, after being logged, log events should not be altered by any participant,
including the logger and auditor. If the researchers and auditors act in collusion
to hide non-compliant acts in the log to avoid consequential actions, the result-
ing log does not represent the true events. Without a mechanism to provably
demonstrate that the integrity of the log is intact, there will be a significant lack
of confidence in the auditing process [3,4]. The privacy audit log should enable
the logger to digitally sign an event to support non-repudiation. The log should
also offer a mechanism to preserve the integrity of log events (e.g., hashing or
encryption). Verifying the signature of an event will prove the authenticity of
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the event logger. The ability to verify the integrity of the log events will result in
a genuine audit of the participant’s actions, since the performed actions (events)
in the log are proven to be authentic.

Figure 2b depicts the additional steps required in the privacy audit log gen-
eration process to support event non-repudiation and integrity. The log is gener-
ated by the logger, but an additional entity, the integrity preserver, is required.
After a log event is generated, the event must be signed by the logger to sup-
port provable accountability. Integrity proof digests (i.e. cryptographic hashes)
of the log events should be generated and stored by the integrity preserver as
the immutable record of the integrity proof. These records can then be retrieved
to enhance the process of compliance checking with log integrity verification.

Besides the functionality described above, the tamper-proof privacy audit log
should preserve the extensibility, flexibility and scalability of the underlying log-
ging framework (i.e. L2TAP). We achieve flexibility through the Linked Data and
SPARQL based solution for the log verification. The extensibility is addressed by
a limited extension of the L2TAP ontology and using other external ontologies
through the modular structure of L2TAP. As demonstrated in [5], the L2TAP
privacy audit log is scalable. The additional verification processes introduced in
this paper to make the log tamper-proof should preserve the scalability.

3 Blockchain Enabled Privacy Audit Logs

In situations where a central authority has control over information resources,
the trust placed in that authority to maintain correct and accurate information
is reduced because there is no provable mechanism for external entities to ver-
ify the state of the resources. Blockchain technology solves the trust problem
by maintaining records and transactions of information resources through a dis-
tributed network, rather than a central authority [21,22]. The use of blockchain
technology to create an immutable record of transactions is analogous to the
auditing problem we are trying to solve; the need for the immutable storage
of information that is not governed by a central authority. In this section, we
present how our blockchain enabled privacy audit log model works. We start
with a brief background on the blockchain technology leveraged by our model,
the Bitcoin blockchain, in Sect. 3.1. We describe the architecture of our model
in Sect. 3.2. Sections 3.3 and 3.4 present the signature graph and block graph
generation components of our model, respectively.

3.1 Bitcoin Blockchain

The Bitcoin system [23] is a cryptocurrency scheme based on a decentralized and
distributed consensus network. Transactions propagate through the Bitcoin peer-
to-peer network in order to be verified and stored in a blockchain. A blockchain
is a decentralized database comprised of a continuously increasing amount of
records, or blocks, that represents an immutable digital ledger of transactions
[7]. Distributed ledgers allow for a shared method of record keeping where each
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participant has a copy of the ledger, meaning that each node on the network will
have to be in collusion to modify the records in the blockchain. Each block in
the blockchain is composed of a header containing a hash of the previous block
in the chain (forming a chain of blocks) and a payload of transactions.

Transactions are written to the blockchain through data structures that con-
tain an input(s) and output(s). Monetary value is transferred between the trans-
action input and output, where the input defines where the value is coming
from and the output defines the destination. The Bitcoin blockchain allows a
small amount of data to be stored in a transaction output using a special trans-
action opcode that makes the transaction provably non-spendable [8]. Using
the OP RETURN opcode available through Bitcoin’s transaction scripting lan-
guage1 allows up to 80 bytes of additional storage to a transaction output [24].
Changes to the state of the blockchain are achieved through a consensus mech-
anism called Proof of Work. Transactions are propagated through the Bitcoin
network and specialized nodes, called miners, validate the transactions. These
miners generate new blocks on the blockchain by solving a hard cryptographic
problem and the other nodes on the network verify and mutually agree that the
solution is correct. As more transactions and blocks are generated, the difficulty
of the cryptographic problem rises, which makes the tampering of data written in
the blocks very difficult. A blockchain explorer application programming inter-
face (API) is required to query transaction information on the Bitcoin network.
A blockchain explorer is a web application that acts as a Bitcoin search engine,
allowing users to query the transactions and blocks on the blockchain [24]. We
utilize this queryable special transaction to store an integrity proof of privacy
audit logs on the Bitcoin blockchain.

3.2 Architectural Components

A blockchain is well suited to fill the role of the integrity preserver in the tamper-
proof log generation process in Fig. 2b. We use the capabilities provided by the
Bitcoin blockchain to store an immutable record of the log integrity proofs.
The logger generates privacy log events and signs these events. After producing
integrity proofs of the signed events, each of the proofs will be written to the
Bitcoin blockchain through a series of transactions. The immutable record of the
integrity proofs on the blockchain will be retrieved using a blockchain explorer.
The components for signing log events and creating Bitcoin transactions are
signature graph generation and block graph generation illustrated in Fig. 3 and
described below.

The signature graph generation component is responsible for capturing the
missing non-repudiation property of the L2TAP audit log framework. An L2TAP
audit log is composed of various privacy events such as data access requests and
responses. The log events consist of a header that captures the provenance of an
event and a body containing information about the event, such as what data is
being accessed by whom. URIs are used to identify a set of statements in the

1 https://en.bitcoin.it/wiki/Script

https://en.bitcoin.it/wiki/Script
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Fig. 3: The architecture of the model

header and body to form RDF named graphs stored in a quad store [25]. We
generate a new named graph, called the signature graph, that contains assertions
about the event’s signature. The event that will be signed is pulled from the quad
store and signed by the logger (flow 1). There needs to be a public key infras-
tructure (PKI) with certificate authorities (CA) in place where the logger has a
generated key pair used for digital signatures (flow 2). The computed signature
and signature graph will be passed to the block graph generation component to
be part of the integrity proof digest computation (flow 3).

The block graph generation component conducts transactions on the Bitcoin
network to write the integrity proof digest to the blockchain. The logger uses a
Bitcoin client to create a transaction containing the integrity proof digest (flow
4). After the transaction is written to the blockchain, the transaction data is
queried through a RESTful request [26] to a blockchain explorer API (flow 5).
The queried data is parsed to an RDF named graph, called the block graph. The
block graph contains the integrity proof digest and information identifying the
block containing the transaction on the blockchain. After the block graph has
been generated, it is stored in a quad store in order for an auditor to perform log
event integrity and signature verification queries (flows 6 and 7, respectively).
Generating a block graph reduces the burden on the auditor when performing log
integrity verification since all of the event integrity proofs are stored in a quad
store. Without the block graphs, the auditor would have to search the entire
Bitcoin blockchain for the integrity proof digests. Since the Bitcoin blockchain
is a public ledger, there are many transactions unrelated to the auditor’s search,
which would make this method of searching inefficient. An alternative approach
is to use a full Bitcoin client to download the entire blockchain, however in
this case the required network bandwidth and local computing power are major
limitations.

The signature graph and block graph generation components require two on-
tology modules to be added to the modular structure of the L2TAP ontology.
The Signing Framework signature ontology [13] expresses all of the necessary al-
gorithms and methods required for verifying a signature. The BLONDiE [27,28]
ontology semantically represents the Bitcoin blockchain. We also need to extend
the L2TAP ontology to capture the signature graph and the signed log event. The
new hasSignedGraph property in the L2TAP-participant module links the sig-
nature graph and signed event graph. An L2TAP log event body is dereferenced
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in the corresponding event header through the L2TAP eventData property. The
signature graph just needs to reference the event header since there is an asser-
tion between the body and header that the two graphs belong to the same event.
The existing structure of L2TAP allows other components of the tamper-proof
auditing to be asserted when a new log is initiated. For example, if a log uses
Symantec2 as the CA this can be included as a triple in the body of the log ini-
tialization event. The extended ontology is available on the tamper-proof audit
log section of the L2TAP ontology website3.

3.3 Signature Graph Generation

The process that the logger of an event has to take to compute a signature and
generate a signature graph is formalized in Algorithm 1. The input parameters
are the log event i header RDF graph, hgi, body, bgi, and the logger’s private
key, sk. Our algorithm follows the process of signing graph data in [11], which
includes: canonicalization, serialization, hash, signature, and assembly [10,11].
We can omit the canonicalization and serialization steps as we can assume our
graphs are in canonicalized form and are serialized in the TriG syntax [29].

Data: Event header graph: hgi, event body graph: bgi, private key: sk
Result: Signature graph: sgi

1 Triples ← (extractTriples(hgi) ∪ extractTriples(bgi)) ;

2 Hash ←
|Triples|∏

j=1

h(tj ∈ Triples)mod(p) ;

3 Sig ← Sign(Hash, sk) ;
4 sgi ← assembly(Sig) ;
5 return sgi

Algorithm 1: Signature graph generation algorithm

The first step in Algorithm 1 is to compute the hash of the input event
header, hgi, and body, bgi. We use incremental cryptography and the graph di-
gest algorithm [14] to compute the digest of hgi and bgi. Since the ordering of
triples in the RDF graph is undefined, the graph digest computation involves
segmenting the input into pieces, using a hash function on each piece, and com-
bining the results [14]. In line 1 we extract the triples from hgi and bgi into the
set of triples, Triples, so that incremental cryptography can be performed on
each triple. In line 2, a set hash over all of the triples in Triples is computed us-
ing a cryptographically secure hash function (e.g., SHA-256) to produce a hash
of each triple [14]. This triple hash is reduced using the modulo operation by a
sufficiently large prime number, p (the level of security depends on the size of the
prime number [14]). Each of the triple hashes are multiplied together, producing
the Hash value in line 2 as the resulting header and body graph digest. After
constructing the graph digest, the logger generates a signature, Sig, by signing
the digest using the Elliptic Curve Digital Signature Algorithm (ECDSA) in

2 https://www.symantec.com
3 http://l2tap.org

https://www.symantec.com
http://l2tap.org
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line 3. ECDSA uses smaller keys to achieve the same level of security as other
algorithms (such as RSA), resulting in a faster signing algorithm. In the final
step we generate the triples of the signature graph as a new named graph using
the assembly function. The triples in this graph contain the signature value and
algorithms for verifying the signature [11].

Listing 1.1 illustrates an example signature graph generated using Algorithm
1. Analogous to work presented in [10], we also use the Signing Framework
signature ontology [13]. Lines 5-8 in this listing contain the signature triples.
Line 6 contains the WebID [30] where the signer’s public key can be acquired
[10]. The log event signature, Sig, is identified in line 7. Line 8 references the log
event header that is signed. The signature graph also contains triples describing
the algorithms required to verify the signature (omitted here).

1 @prefix sig: <http://icp.it-risk.iwvi.uni-koblenz.de/ontologies/signature.owl#> .
2 @prefix l2tapp: <http://purl.org/l2tapp#> .
3 _:log-sig-1 {
4 # triples omitted describing graph signing methods
5 _:log-sig-1 a sig:Signature ;
6 sig:hasVerificationCertificate <signer/WebID/URI> ;
7 sig:hasSignatureValue "MEUCIQC44Qy2O8Mx..."^^xsd:string ;
8 l2tapp:hasSignedGraph _:log_h1 . }

Listing 1.1: Signature Graph

3.4 Block Graph Generation

Algorithm 2 inputs an event’s signature (sgi), header (hgi) and body (bgi) graphs
to compute and write an integrity proof digest to the Bitcoin blockchain and
generate a block graph. Analogous to Algorithm 1, the triples are extracted
from the input graphs into the set of triples, Triples (line 1), so that incremental
cryptography can be used to compute the integrity proof digest, H (line 2).

Data: Signature graph: sgi, event header graph: hgi, event body graph: bgi
Result: Block graph: BlockGraphi

1 Triples ← (extractTriples(sgi) ∪ extractTriples(hgi) ∪ extractTriples(bgi)) ;

2 H ←
|Triples|∏

j=1

h(tj ∈ Triples)mod(p) ;

3 Write H to Bitcoin blockchain (using Bitcoin client) ;
4 md ← query block metadata (using blockchain API) ;
5 BlockGraphi ← assembly(md, H) ;
6 return BlockGraphi

Algorithm 2: Block graph generation algorithm

The next step is to create a Bitcoin transaction using a Bitcoin client4 to
write the integrity proof to the Bitcoin blockchain (line 3). An audit log re-
quires one transaction per event. The Bitcoin client validates transactions by
executing a script written in Bitcoin’s transaction scripting language. The lan-
guage provides the scriptPubKey output and the scriptSig input scripts5 to

4 https://blockchain.info/wallet/#/
5 https://en.bitcoin.it/wiki/Script#Provably_Unspendable.2FPrunable_Outputs

https://blockchain.info/wallet/#/
https://en.bitcoin.it/wiki/Script#Provably_Unspendable.2FPrunable_Outputs
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validate transactions. A transaction in our model contains the OP RETURN
opcode in the scriptPubKey output (scriptPubKey = OP RETURN + H)
and the logger’s signature and public key in the scriptSig input (scriptSig =
signature + publicKey). We store the integrity proof digest in the 80-byte data
segment of the OP RETURN transaction output. The transaction is propagated
through the Bitcoin network for verification.

After the transaction containing the integrity proof digest has been stored
on the Bitcoin blockchain, two queries are performed to retrieve the metadata
of the transaction using the Bitcoin blockchain data API6 provided by the
blockchain.info blockchain explorer (line 4). The first query is an HTTP GET re-
quest to https://blockchain.info/rawaddr/$bitcoin_address, where $bit-
coin address is the logger’s Bitcoin address used to create the transaction. JSON
data is returned containing an array of transactions made from the specified
Bitcoin address. The JSON data is parsed to find the block height of the block
containing the integrity proof digest transaction. The block height is the num-
ber of blocks between the first block in the Bitcoin blockchain and the current
block. The block height can be found in the transaction array using the transac-
tion’s scriptSig value. The second query is an HTTP GET request to https://

blockchain.info/block-height/$block_height?format=json, where $block
height is the retrieved block height. This query returns the block metadata

needed to assemble the block graph, such as the hash of the previous block and
timestamp. This information is necessary to build a complete representation of
the block and allow for the block graph data to be easily verified.

The final step in the algorithm is to use the assembly function to create a
new named graph, called the block graph, that describes the metadata about
the block containing the integrity proof digest transaction. Listing 1.2 illustrates
an example of a block graph output by Algorithm 2, serialized in TriG. We use
the BLONDiE [27] ontology to generate the triples in this listing. The object
of each triple is populated with the values extracted from the blockchain.info
queries. Lines 5-9 describe the integrity proof transaction. The scriptSig value
is captured in Line 8 and the hash of the transaction in line 7. Line 9 holds
the integrity proof digest of the event and signature graphs (in hexadecimal).
This value is what an auditor will be querying when conducting log integrity
verification. Additional triples that describe the block header and payload are
omitted to save space.

1 @prefix blo: <http://www.semanticblockchain.com/Blondie.owl#> .
2 _:exlog-block-1 {
3 _:exlog-block-1 a blo:BitcoinBlock ;
4 # triples omitted describing block header and payload
5 blo:BitcoinTransaction blo:hasBitcoinTransactionInput blo:BitcoinTransactionInput ;
6 blo:hasBitcoinTransactionOutput blo:BitcoinTransactionOutput .
7 blo:BitcoinTransactionInput blo:hashBitcoinTransactionInput "1a2...3fc"^^xsd:string ;
8 blo:scriptSignBitcoinTransactionInput "4730440...41d6e6"^^xsd:string .
9 blo:BitcoinTransactionOutput blo:scriptPubkeyBitcoinTransactionOutput "6a2848...e46e65"^^

xsd:string . }

Listing 1.2: Block Graph

6 https://blockchain.info/api/blockchain_api

https://blockchain.info/rawaddr/$bitcoin_address
https://blockchain.info/block-height/$block_height?format=json
https://blockchain.info/block-height/$block_height?format=json
https://blockchain.info/api/blockchain_api
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4 Log Integrity Verification

The goal of an auditor in a privacy auditing scenario is to check the compliance
of participants’ actions with respect to the privacy policies. The authors in [5]
described a SPARQL-based solution for compliance checking; i.e. answering the
question of, for a given access request and its associated access activities, have
the data holders followed the access policies? This section describes our extended
SPARQL-based solution to enhance the compliance checking queries described
in [5] to include the integrity and authenticity verification of log events.

For a given L2TAP log, the process of verifying the log integrity and au-
thenticity and compliance checking can be performed in a sequence; i.e. for all
events in the log, first ensure the integrity and authenticity of all events and
then execute the compliance queries for the interested access request. However,
in practice this approach is not desirable as for a fast growing log, verifying the
entire log for each audit query is very expensive (see our experiment in Sect. 5).
Alternatively, we can devise an algorithm that verifies the integrity and authen-
ticity of a small subset of the event graphs for a given access request. The L2TAP
ontology provides compliance checking of a subset of events through SPARQL
queries [2], which the following algorithm can leverage to reduce the runtime.

Data: Event header graph: hgi, event body graph: bgi, signature graph: sgi
Result: Boolean verification value: vi

1 Triples ← (extractTriples(hgi) ∪ extractTriples(bgi) ∪ extractTriples(sgi)) ;

2 H ←
|Triples|∏

j=1

h(tj ∈ Triples)mod(p) ;

3 URI ← Query block graphs for H (Listing 1.3) ;
4 if URI 6= ∅ then
5 vi ← verifySignature(sgi, hgi, bgi) ;
6 else
7 vi ← false ;
8 end
9 return vi

Algorithm 3: Verification algorithm

Algorithm 3 formalizes the steps an auditor takes to verify the integrity of
a log event and the event signature prior to checking compliance. The input
parameters are the event header (hgi), body (bgi), and signature (sgi) graphs,
for an event i in the subset of events related to an access request. Assuming
a cryptographically secure hash function is used to recompute the digest, any
modification of the graphs will result in a different digest. If the search of the
block graphs is successful and the computed digest is found, then the log event
must have remained unmodified [3]. Therefore, the first step in the algorithm
is to recompute the integrity proof digest of the log event. We originally used
incremental cryptography to calculate the integrity proof digest, so the same
method must be used again for computing consistent digests. In lines 1 and
2, we first extract the triples of the input graphs and compute the integrity
proof digest, H, similar to what we described in Sect. 3.4. The SPARQL query
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in Listing 1.3 is executed against the block graphs to find a matching digest
in the scriptPubkeyBitcoinTransactionOutput relation (line 3). This query
is parameterized with the integrity proof digest, H (@integrityProofDigest).
If the query returns the URI of a block graph containing the integrity proof
digest, we proceed to verify the signature in the signature graph (lines 4 and 5).
Otherwise, if no matching value is found in the block graphs, we conclude that
the integrity of the log event has been compromised.

1 PREFIX blo: <http://www.semanticblockchain.com/Blondie.owl#> .
2 SELECT ?g WHERE {
3 GRAPH ?g { ?s blo:scriptPubkeyBitcoinTransactionOutput @integrityProofDigest }}

Listing 1.3: SPARQL query for integrity verification

The signature graph of the event can be found through the hasSignedGraph

property. The algorithms used to verify the signature are extracted from the
signature graph triples containing the hashing (i.e. SHA-256) and signing algo-
rithms (i.e. ECDSA). The public key of the logger is retrieved by following the
WebID URL in the hasVerificationCertificate property of the signature
graph. If the signature verification process in line 5 fails, the algorithm returns
false. In the case of no matching integrity proof digest or signature verification
failure, the auditor will know which event has been modified and who the logger
of the event is. However, the auditor will not know what the modification is,
only that a modification has occurred. Therefore, proof of malicious interference
would need further investigation.

Despite the process in this section supporting the confidentiality, authen-
ticity and integrity of a privacy log, the approach is susceptible to an internal
attack to subvert the verification process. However, to be successful, an attacker
would have to generate and sign a fake log event, store the event in the quad
store, calculate an integrity proof, store the proof on the blockchain, and finally
generate a block graph pointing to the fake integrity proof block.

5 Experimental Evaluation

This section presents a scalability evaluation of our blockchain enabled privacy
audit log model from the perspective of an auditor. In the experiment, we ran
our integrity checking algorithm on increasingly sized L2TAP privacy audit logs.
Section 5.1 describes the synthetic audit log used in the experiment. In Sect. 5.2,
we illustrate the details of the test environment. The results of the experiment
are discussed in Sect. 5.3.

5.1 Dataset

To simulate the process of an auditor checking the integrity of an audit log,
we generated synthetic L2TAP logs7. A basic log consists of eight events: log
initialization, participants registration, privacy preferences and policies, access

7 Datasets are available in the figshare repository: https://doi.org/10.6084/m9.figshare.5234770

https://doi.org/10.6084/m9.figshare.5234770
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request, access response, obligation acceptance, performed obligation, and actual
access. The actual contents of these events can be found in [5]. To create a
larger audit log, we repeatedly generate the access request events. Our largest
synthetic log, composed of 9998 events, contains a total of 989,589 triples: 84
triples from the first three events of log initialization, participants registration,
and privacy preferences and policies, and 989,505 triples generated from 9995
additional access request events where each access request leads to the generation
of the five remaining events with a total of 99 triples.

The signature and block graph for each event needs to be generated for the
auditor to perform the integrity verification procedure. A log containing 9998
events would generate the same number of signature graphs, block graphs, and
Bitcoin transactions. In this case, the total size of the dataset that the auditor
would need to process is 39,992 graphs. The initial state of the experiment is an
audit log containing n events (composed of 2n header and body graphs) with n
generated signature graphs and n generated block graphs. All of these graphs
(4n) would be stored on a server in a quad store prior to measuring the scalability
of the integrity verification solution. Figure 4 illustrates the log sizes used for
the experiment, which range from a log containing 98 events to 9998 events.

5.2 Test Environment

The experiment was run by executing the SPARQL queries on a Virtuoso [31]
server and quad store deployed on a Red Hat Enterprise Linux Server release
7.3 (Maipo) with two CPUs (both 2 GHz Intel Xeon) and 8 GB of memory. The
RDF graph processing and hash computations in Algorithm 3 were run on a Mac-
Book Pro with a 2.9 GHz Intel Core i7 processor and 8 GB of memory. The Java
method used to measure the elapsed execution time of the experiment is Sys-
tem.nanoTime(). The execution time is measuring the time difference between
sending the queries to the quad store on the server over HTTP and verifying
the integrity proof digest and the signature. The recorded time does not take
into account the time to generate the signature and block graphs (these were
pre-computed before the experiment) or the time needed to write the data to the
Bitcoin blockchain. To account for variability in the testing environment, each
reported elapsed time is the average of five independent executions.

5.3 Experimental Results

In practice, an auditor would operate on a subset of events in the log based on
the results from compliance queries for a given access request. We have opted to
demonstrate a worst-case scenario by verifying the integrity and authenticity
of an entire log rather than a subset of the events. This will also demonstrate
the execution time of large subsets of events that are the size of the entire logs
we conducted the experiment on.

The experiment consisted of retrieving all of the log events and their corre-
sponding signature graphs from a quad store deployed on the server. Each set
of graphs were input to Algorithm 3, which computes the integrity proof digest
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and executes the query in Listing 1.3 to determine if the integrity proof could
be found in a block graph in the quad store. This procedure was executed on an
audit log that contained a number of events ranging from 98 to 9998, as shown
in Fig. 4. Figure 4 also illustrates the number of graphs that were input to the
integrity proof digest computation in line 2 of Algorithm 3. A log consisting
of 9998 events requires 29,994 (9998 header, 9998 body, 9998 signature graphs)
graph digest calculations. A log of this size will generate 9998 block graphs as
well, which will need to be searched for the integrity proof.

The elapsed execution time is plotted in Fig. 4. The graph illustrates the
execution time of verifying the signature, computing and verifying the integrity
of the events, and the overall process. The experiment validates the linear time
growth for the entire integrity checking procedure. It can be seen that an increase
of about 2000 events results in an increase of approximately 7 minutes to the
integrity verification procedure. The reported results can be extrapolated to
predict that a log containing an extreme case of one million events will take
approximately 48 hours to perform an integrity check. This time is relatively
small considering the vast amount of triples that would need to be processed
from the event header and body, signature and block graphs (> 100 million
triples). The results of the experiment validate the scalability of our blockchain
solution and demonstrates that the solution can perform efficiently at the task
of verifying the integrity and signature of the audit log events.
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Fig. 4: Elapsed execution times for integrity and signature verification

6 Related Work

There are a number of proposals that provide a mechanism for verifying the
integrity of an audit log [17,32]. Butin et al. [19] address the issues of log design
for accountability, such as determining what the log should include so auditors
can perform meaningful a posteriori compliance analysis. Tong et al. [20] propose
a method of providing role-based access control auditability in audit logs to
prevent the misuse of data. These solutions only address the integrity of privacy
audit logs and miss the non-repudiation aspect. There is a need for a practical
solution for supporting the non-repudiation and integrity of the logs.
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Kleedorfer et al. [10] propose a Linked Data based messaging system that
verifies conversations using digital signatures. The RDF graph messages are
signed and a signature graph is produced, which can be iteratively signed as
the messages pass between recipients. Kasten et al. [11] provide a framework for
computing RDF graph signatures. This framework supports signing graph data
at different levels of granularity, multiple graph signatures, and iterative graph
signatures [11]. Kasten [12] discusses how the confidentiality, integrity, and avail-
ability of Semantic Web data can be achieved through approaches of Semantic
Web encryption and signatures.

Use of blockchain technology in the auditing of financial transactions have
been investigated [3] after the repercussions of the Enron Scandal in 2001, where
auditor fraud was the source of public distrust [4]. Anderson [3] proposes a
method of verifying the integrity of files using a blockchain. Similar to our ap-
proach, Cucurull et al. [8] present a method for enhancing the security of logs
by utilizing the Bitcoin blockchain. Our approach differs by providing a model
to create tamper-proof logs in a highly scalable Linked Data environment.

7 Conclusions

In this paper we presented a method for utilizing blockchain technology to pro-
vide tamper-proof privacy audit logs. The provided solution applies to Linked
Data based privacy audit logs, in which lacked a mechanism to preserve log in-
tegrity. SPARQL queries and graph generation algorithms are presented that a
log generator can perform to write log events to a blockchain and auditors can
perform to verify the integrity of log events. The model can be used by loggers
to generate tamper-proof privacy audit logs whereas the integrity queries can be
used by external auditors to check if the logs have been modified for nefarious
purposes. The paper includes an experimental evaluation that demonstrates the
scalability of the audit log integrity verification procedure. Based on our exper-
imental results, the solution scales linearly with increasingly sized privacy audit
logs.

There are a number of directions for future work. First, we acknowledge Bit-
coin’s limitations in terms of cost, speed, and scalability [33]. We utilized Bitcoin
since it provides an established storage mechanism suitable for integrity proofs
and to demonstrate the feasibility of our solution applied to Linked Data. For an
optimized implementation, other blockchain technologies, such as Ethereum [34],
should be compared in terms of transaction fee, scalability, and smart contract
and private ledger support. Second, a log containing thousands of events will
require thousands of transactions and occupy a large space on the blockchain.
Using Merkle trees [8,35] can reduce the storage and transaction requirements
by writing the root of the tree (composed of multiple integrity proofs) to the
blockchain. However, this will increase the work for an auditor to verify the log
integrity since more hash value computations are required to reconstruct the
hash tree. Formalizing the trade-offs between hash trees and the verification
effort is an interesting optimization problem to investigate.
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