
An extension of SPARQL for expressing
qualitative preferences

Antonis Troumpoukis12, Stasinos Konstantopoulos1, and Angelos
Charalambidis1

1 Institute and Informatics and Telecommunications, NCSR ‘Demokritos’
Aghia Paraskevi 15310, Athens, Greece

{antru,konstant,acharal}@iit.demokritos.gr
2 Department of Informatics and Telecommunications, University of Athens, Greece

Abstract. In this paper we present SPREFQL, an extension of the
SPARQL language that allows appending a "PREFER" clause that ex-
presses ‘soft’ preferences over the query results obtained by the main
body of the query. The extension does not add expressivity and any
SPREFQL query can be transformed to an equivalent standard SPARQL
query. However, clearly separating preferences from the ‘hard’ patterns
and filters in the "WHERE" clause gives queries where the intention of the
client is more cleanly expressed, an advantage for both human readabil-
ity and machine optimization. In the paper we formally define the syntax
and the semantics of the extension and we also provide empirical evidence
that optimizations specific to SPREFQL improve run-time efficiency by
comparison to the usually applied optimizations on the equivalent stan-
dard SPARQL query.

Keywords: SPARQL query processing; expressing preferences; query execution
optimization.

1 Introduction

Preferences can be used in situations where, while looking for the best solution
with respect to a set of criteria, we find out that too strict criteria might not re-
turn any solutions, but relaxing them returns too many solutions to sift through.
The integration of preferences allows to view some constraints as soft constraints
that can be violated in the former case and return less-preferred results, but will
be enforced in the latter case to only return more-preferred results.

Preferences have been explored in Artificial Intelligence [8], Database Sys-
tems [21], Programming Languages [7], and, more recently, enjoy a growing
interest in the area of the Semantic Web [17]. In the Semantic Web context,
preferences allow users to sift through data of varying trustworthiness, quality,
and relevance from a specific end user’s point of view [22]. As argued by Siberski
et al. [20], the motivating example in the beginning of the seminal Semantic Web
article [2] can be interpreted as a preference search.

Strictly speaking, preferences are not more expressive than standard SPARQL.
Their most prominent feature, returning less-preferred binding sets in the ab-
sence of more-preferred ones, can be simulated with "NOT EXISTS" and, in gen-
eral, with the syntax already offered by SPARQL. However, clearly separating
preferences from the ‘hard’ patterns and filters in the "WHERE" clause gives us
queries where the intention of the author is cleanly expressed and not obscured.
This has advantages in both human readability and machine optimization.

In this paper, we first give a background on the treatment of preferences in
databases (Section 2) and proceed to present our proposed SPREFQL syntax
and semantics (Section 3). We then present our SPREFQL query processor im-
plementations and our benchmarks on them (Section 4). These empirical results
are used to support our claim above that optimizing directly at the SPREFQL
syntax is more efficient than rewriting into standard SPARQL and passing the
latter to an optimizing SPARQL query processor. We then present some related
work on the Semantic Web and compare it with our approach (Section 5). We
close the paper with conclusions and future research directions (Section 6).

2 Background

Preference representation formalisms are either quantitative, where preferences
are represented by a preference value function [1, 13], or qualitative, where pref-
erences are expressed by directly defining a binary preference relation between
objects [5, 11]. In the example below:

Example 1. Show me Sci-fi movies, assuming I prefer longer movies.

there is a hard constraint for SciFi movies and a preference towards longer
movies. Such a constraint can be represented both as a quantitative function of
the movies’ runtime and as a qualitative relation that compares movies’ runtimes.
With this example, however:

Example 2. Show me Sci-fi movies, assuming I prefer original movies to their
sequels.

it becomes apparent that there are cases where not all objects are directly com-
parable, and therefore the total ordering implied by the preference value function
cannot always be defined. In fact, Chomicki [5] argues that the qualitative ap-
proach is strictly more general than the quantitative approach, as not all prefer-
ence relations can be expressed using a preference value function. In Chomicki’s
framework, preference relations are defined using first-order formulas:

Definition 1. Given a relation schema RpA1, . . . , Anq such that Ui, 1 ď i ď n,
is the domain of the attribute Ai, a relation ą is a preference relation over R if
it is a subset of pU1 ˆ ¨ ¨ ¨ ˆUnq ˆ pU1 ˆ ¨ ¨ ¨ ˆUnq. A result tuple t1 is said to be
dominated by t2, if t2 ą t1.

This general preference relation is restricted into intrinsic preference formulas
that do not rely on external information to compare two objects:

Definition 2. Let t1, t2 denote tuples of a given database relation. A preference
formula P pt1, t2q is a first-order formula defining a preference relation ąP in
the standard sense, namely, t1 ąP t2 iff P pt1, t2q holds. An intrinsic preference
formula is a preference formula that uses only built-in predicates (i.e. equality,
inequality, arithmetic comparison operations, and so on).

Example 3. Consider the movie(ID,Title,Genre,Duration) relation shown in
Table 1. Suppose that we have the following preference: ‘I prefer one movie

tuple over another iff their genre is the same and the first one runs longer’. The
preference relation ąP implied by the previous sentence can be defined using
formula P :

pi, t, g, dq ąP pi
1, t1, g1, d1q ” pg “ g1q ^ pd ą d1q.

Therefore, we prefer movie m3 to m2, movie m2 to m1, m3 to m1 and movie m4

to m5. Both conjuncts must be satisfied for the preference relation to hold, so
there is no preference relation between movies from different genres regardless
of their runtime.

A new relational algebra operator is introduced, called winnow. This operator
takes two parameters, a database relation and a preference formula and selects
from its argument relation the most preferred tuples according to the given
preference relation.

Preference relations can be composed in order to form more complex ones.
Since preference relations are defined through preference formulas, in order to
combine two such relations one must combine their corresponding formulas.
Given two preference relations ąP ,ąQ, the most common composition opera-
tions are the following:

– Boolean: (e.g. intersection) t1 ąP^Q t2 ” pt1 ąP t2q ^ pt1 ąQ t2q,
– Pareto: t1 ąPbQ t2 ” ppt1 ąP t2q ^ pt2 čQ t1qq _ ppt1 ąQ t2q ^ pt2 čP t1qq,
– Prioritized: t1 ąPŹQ t2 ” pt1 ąP t2q _ ppt1 „P t2q ^ pt1 ąQ t2qq,

where t1 čP t2 ” pt1 ąP t2q and t1 „P t2 ” pt1 čP t2q ^ pt2 čP t1q.
In order to select the ‘best’ tuples from a given relation r based on a prefer-

ence formula P , the winnow operator is introduced:

Table 1. A sample movies relation.

ID Title Genre Duration Sequel

m1 Star Wars Ep.IV: A New Hope Sci-fi 121 m2

m2 Star Wars Ep.V: The Empire Strikes Back Sci-fi 124 m3

m3 Star Wars Ep.VI: Return of the Jedi Sci-fi 130

m4 Die Hard Action 131 m5

m5 Die Hard with a Vengeance Action 128

Definition 3. Let r be a relation and let P be a preference formula defining a
preference relation ąP . The winnow operator is defined as

wP prq “ tt P r : Dt1 P r such that t1 ąP tu.

Example 4. Given the relation movie in Table 1 and the preference formula C
of Example 3, the result of the wP pmovieq operation is the movies with IDs m3

and m4. m1 and m2 are not included in the result because they are less preferred
than m3 and m5 because it is less preferred than m4. Since there is no preference
relation between m3 and m4, they are both included in the result.

Although winnow can be expressed using standard relational algebra oper-
ators [5], there also exist algorithms that directly compute the result of the
winnow operator wP pRq. The most prominent such algorithms are the Nested
Loops (NL) algorithm and the Blocked Nested Loops (BNL) algorithm. In NL,
each tuple of R is compared with all tuples in R, therefore the complexity of
NL is quadratic in the size of R. In BNL, a fixed amount of main memory (a
window) is used, in order to keep a set of incomparable tuples, which at the
end of the algorithm will become the dominating tuples of R. Even though the
asymptotic time complexity of BNL is also quadratic, in practice BNL performs
better than NL. Especially in the case that the result set of winnow fits into
the window, the algorithm operates in one or two iterations (i.e. linear time to
the size of R) [3]. Regarding the correctness of the result of each algorithm,
NL produces the correct result for every preference relation (even in unintuitive
cases such as preference relations in which a tuple is preferred to itself). On the
other hand, BNL produces the correct result only if the preference relation ą is a
strict partial order [5], that is to say iff the relation is (1) irreflexive px ą xq (2)
transitive px ą yq^px ą zq ñ px ą zq and (3) asymmetric px ą yq ñ py ą xq.

Example 5. Let us assume the relation movie in Table 1 and the following pref-
erence formula C 1:

‘I prefer one movie tuple over another iff their genre is the same and the
first one has the second as sequel.’

In this case, BNL is not guaranteed to produce the correct result because m1

‘sequel’ m2 and m2 ‘sequel’ m3, but m1 ‘sequel’ m3 is not asserted, making the
‘sequel’ property (and thus the whole preference relation) not transitive. The
result of the BNL algorithm depends on the order in which pairs are tested: if
m2 is compared to m1 before being compared to m3, the first comparison will
remove m2 from the window making m1 and m3 incomparable and the result is
tm1,m3,m4u; if m2 is compared to m3 before being compared to m1, then both
m3 and m2 will be removed and the result is tm1,m4u.

3 The SPREFQL Language

In this section we introduce SPREFQL, which is an extension of SPARQL that
supports the expression of qualitative preferences. User preferences are expressed

as a new solution modifier which eliminates the solutions that are dominated
by (i.e., are less preferred than) another solution. This modifier is similar to a
preference formula in Chomicki’s framework discussed above. In this section we
present the syntax and the semantics of SPREFQL, discuss its expressive power,
and we will give some examples of SPREFQL queries.

3.1 Syntax

We assume as a basis the EBNF grammar that defines SPARQL syntax [10, Sec-
tion 19.8] and we extend it by changing the definition of the xSolutionModifiery
non-terminal (Rule 18). The new definition adds a xPreferClausey non-terminal
between the xHavingClausey and the xOrderClausey non-terminals. The ratio-
nale for this positioning is that:

– The prefer clause should be after the group-by/having clauses, as it would
make sense to use in the former the aggregates computed by the latter.

– The prefer clause should be before the limit/offset clauses, as it would be
counter-intuitive to miss preferred solutions because they have been limited
out, so the limit should apply to the preferred solutions.

– The prefer clause could equivalently be either before or after the order-by
clause, but there is no reason to sort solutions that are going to be discarded
afterwards. Naturally an optimizer could also re-order these computations,
but there is no reason why the default execution plan should not put these
in the more efficient order already. A further advantage of placing the prefer
clause before the order-by clause is that this avoids requiring from compliant
SPREFQL implementations that they maintain the order of the result set.

Fig. 1. The SPREFQL grammar.
The full EBNF grammar for SPREFQL is the result of starting with the grammar
for SPARQL 1.1 [10, Section 19.8], replacing Rule 18 with the first rule below, and
appending the rest of the rules below.

xSolutionModifiery ::= [xGroupClausey] [xHavingClausey] [xPreferClausey]
[xOrderClausey] [xLimitOffsetClausesy]

xPreferClausey ::= ‘PREFER’ xVarListy ‘TO’ xVarListy ‘IF’ xParetoPref y

xVarListy ::= xVary
| ‘(’ xVary+ ‘)’

xParetoPref y ::= xPrioritizedPref y [‘AND’ xParetoPref y]

xPrioritizedPref y ::= xBasicPref y [‘PRIOR’ ‘TO’ xPrioritizedPref y]

xBasicPref y ::= ‘(’ xParetoPref y ‘)’
| xSimplePref y

xSimplePref y ::= xConstrainty

Figure 1 gives the EBNF rules that define xPreferClausey and also re-define
xSolutionModifiery. All non-terminals that are not defined in this table are de-
fined by standard SPARQL syntax: xGroupClausey (Rule 19), xHavingClausey
(Rule 21), xOrderClausey (Rule 23), xLimitOffsetClausesy (Rule 25). xConstrainty
(Rule 69), and xVary (Rule 108). Note, in particular, how basic preferences are
a conjunction of the standard SPARQL xConstrainty used in the definitions of
"HAVING" and "FILTER" clauses. This means that preferences are expressed using
the familiar syntax of SPARQL constraints.

In the remainder, we shall call query base BpQq the standard SPARQL query
that is derived from a SPREFQL query Q by removing the "PREFER" clause. We
shall also call full result set the result set of BpQq and preferred result set the
result set of Q. We continue with a simple example in SPREFQL.

Example 6. Suppose that we want to query an RDF database with movies and
we have the following preference:

‘I prefer one movie to another iff their genre are the same and the first
one runs longer.’

The size of the preferred result set is equal to the number of the available gen-
res in the dataset (since two films with different genre are incomparable). For
each genre, the selected film must be the one with the longest runtime. The
corresponding SPREFQL query is listed in Listing 1.

To express preference of one binding set over another, we first use the "PREFER"
clause to assign variable names to the bindings in the two binding sets, so that
the two binding sets can be distinguished from each other. We then use the
"IF" clause to express the conditions that make the first binding set dominate
the second one. In the query in Listing 1, for example, there are three bindings
in each result, (?title ?genre ?runtime). In order to compare two binding
sets, the "PREFER" clause assigns the bindings in the first result to the variables
(?title1 ?genre1 ?runtime1) and the bindings in the second result to the
variables (?title2 ?genre2 ?runtime2). These new variable names are then
used in the "IF" clause to specify when the first result dominates the second re-
sult. Notice that any name can be used for the variables in the "PREFER" clause,
and what maps them to the variables in the "SELECT" clause is the order of ap-
pearance. For example, in this query, variables ?title1, ?title2 correspond to
variable ?title, the variables ?genre1, ?genre2 correspond to variable ?genre

and so on. Note also that the names in the "PREFER" clause need to be distinct
from each other, but they do not need to be distinct from the names in the
"SELECT" clause. In this manner, the style shown in Listing 2 is also possible, if
the query author prefers it.

Given the above, we define well-formed SPREFQL queries as follows:

Definition 4. Let Q “ SELECT L WHERE P1 PREFER L1 TO L2 IF P2 be a
SPREFQL query produced by the grammar of Figure 1. Then, Q is well-formed
iff |L| “ |L1| “ |L2| and all variables of L1, L2 are distinct.

Listing 1. ‘I prefer one movie over another iff their genre is the same and the duration
of the first is longer’.

SELECT ?title ?genre ?runtime WHERE {

?s a :film. ?s :title ?title. ?s :genre ?genre. ?s :runtime ?runtime.

}

PREFER (?title1 ?genre1 ?runtime1) TO (?title2 ?genre2 ?runtime2)

IF (?genre1 = ?genre2 && ?runtime1 > ?runtime2)

Listing 2. ‘I prefer one movie over another iff their genre is the same and the duration
of the first is longer’.

SELECT ?title ?genre ?runtime WHERE {

?s a :film. ?s :title ?title. ?s :genre ?genre. ?s :runtime ?runtime.

}

PREFER (?t ?genre ?runtime) TO (?otherT ?otherGenre ?otherRuntime)

IF (?genre = ?otherGenre && ?runtime > ?otherRuntime)

Listing 3. ‘Given two action movies, I prefer the longest one and more recent one with
equal importance’.

SELECT ?title ?genre ?runtime WHERE {

?s a :film. ?s :genre :action.

?s :title ?title. ?s :runtime ?runtime. ?s :year ?year.

}

PREFER (?title1 ?runtime1 ?year1) TO (?title2 ?runtime2 ?year2)

IF (?runtime1 > ?runtime2) AND (?year1 > ?year2)

Listing 4. ‘Given two action movies, I prefer the one that runs between 115 and 125
minutes. If they are the same to me according to this criterion, I prefer the ones that
they are after 2005’.

SELECT ?title ?genre ?runtime WHERE {

?s a :film. ?s :genre :action.

?s :title ?title. ?s :runtime ?runtime. ?s :year ?year.

}

PREFER (?title1 ?run1 ?year1) TO (?title2 ?run2 ?year2)

IF (?run1 >= 115 && ?run1 <= 125 && (?run2 < 115 || ?run2 > 125))

PRIOR TO (?year1 >= 2005 && ?year2 < 2005)

Listing 5. ‘I want to watch a movie with “Mad Max” in the title, and I prefer original
movies to their sequels’.

SELECT ?film ?title WHERE {

?film a :film . ?film :title ?title. FILTER regex(?title, "Mad Max").

}

PREFER (?film1 ?title1) TO (?film2 ?title2)

IF EXISTS { ?film1 :sequel ?film2 }

Listing 6. Rewrite of the "PREFER" clause in Listing 3 without using the "AND" com-
binator.

PREFER (?title1 ?runtime1 ?year1) TO (?title2 ?runtime2 ?year2)

IF (((?runtime1 > ?runtime2) && !(?year2 > ?year1))

|| ((?year1 > ?year2) && !(?runtime2 > ?runtime1)))

Listing 7. Rewrite of the "PREFER" clause in Listing 4 without using the "PRIOR TO"

combinator.

PREFER (?title1 ?run1 ?year1) TO (?title2 ?run2 ?year2)

IF ((?run1 >= 115 && ?run1 <= 125 && (?run2 < 115 || ?run2 > 125))

||

(!(?run1 >= 115 && ?run1 <= 125 && (?run2 < 115 || ?run2 > 125)) &&

!(?run2 >= 115 && ?run2 <= 125 && (?run1 < 115 || ?run1 > 125)) &&

(?year1 >= 2005 && ?year2 < 2005)

))

In Section 2 we presented some ways so that two preference relations can
be combined into one more complex one. As in the framework of Chomicki,
we can also use boolean operators to combine the individual boolean expres-
sions (boolean composition). Besides logical operators, we offer the following
two preference combinators for combining preference relations:

– Pareto composition: the "AND" combinator composes a relation from two
preference relations that are of equal importance (cf. Listing 3). We follow
previous work [12, 20] in using "AND" for the Pareto combinator, noting that
it should not be confused with the logical conjunction operator.

– Prioritized composition: the "PRIOR TO" combinator composes a preference
relation where the less-important right-hand side argument is only applied if
the more-important left-hand side argument does not impose any preference
between two object (cf. Listing 4).

These combinations can be expressed within a simple constraint with the
elaborate use of boolean operators. But this ‘syntactic sugar’ makes useful ex-
pressions a lot more readable. Compare, for example, the queries in Listings 3
and 4 with their equivalent queries without using the "AND" and "PRIOR TO"

combinators, in Listings 6 and 7 respectively.
Since a basic simple preference is a Constraint, anything that can appear

as a parameter in a SPARQL "FILTER" clause can be used as a simple basic
user preference, and has the same meaning as in SPARQL "FILTER" clauses.
This could be also an "EXISTS" expression, as it is shown in Listing 5. These
type of preference relations are known as extrinsic preferences [5], and are not
supported by Chomicki’s framework. A preference relation is extrinsic if the
decision of whether an element is preferred over another depends not only on
the values of the elements themselves, but also on external factors (such as the
the :sequel predicate in our example).

3.2 Semantics

In this section we will define the semantics of SPREFQL. Our semantics extend
the standard semantics of SPARQL [10]. We assume basic familiarity of the
semantics of SPARQL, but we will present some basic terminology when needed.

We denote by T the set of all RDF terms and by V the set of all variables.
A mapping µ is a partial function µ : V Ñ T. The domain of a mapping µ,
denoted as dompµq is the subset of V where µ is defined. It is straightforward
to see that mappings express variable bindings and that given a mapping µ it is
always possible to construct a "VALUES" clause that expresses the same bindings
as µ does.

Example 7. Let µ “ tpg, "Sci-fi"q, pr, 121qu Then µ expresses the same binding
of variable "?g" as the clause "VALUES (?g ?r) { "Sci-fi" 121 }".

Following Pérez et al. [16] we denote by v¨wD the evaluation of a SPARQL
query over a dataset D. If a query Q is a SELECT query, then vQwD is a set of
mappings, which are the solutions that satisfy Q over D. If Q is an ASK query,
then vQwD is equal to true if there exists any solution for Q in D, otherwise it is
equal to false.

We will now continue with the semantics of the preference solution modifier.
Firstly though, we have to include some preliminary definitions:

Definition 5. Let L “ pl1, . . . , lnq, B “ pb1, . . . , bnq be two variable lists and µ
be a mapping s.t. dompµq “ B, where B is the set of all variables of B. Then, we
denote by RenameBÑLpµq a mapping that is created from µ by renaming variable
bi to li, for all i “ 1, . . . , n.

Definition 6. Let L,L1, B be three variable lists, s.t. |L| “ |L1| “ |B| and all
variables that appear in L,L1 are distinct. Also, let µ, µ1 be two mappings s.t.
dompµq “ dompµ1q “ B, where B is the set of all variables of B. Then, we denote
by ConstructMappingBÑL,BÑL1pµ, µ1q a mapping such that

ConstructMappingBÑL,BÑL1pµ, µ1q “ RenameBÑLpµq Y RenameBÑL1pµ1q.

Definition 7. Let C be a SPARQL Constraint and µ be a mapping. Then,
we denote by ConstructQuerypC, µq a query of the form "ASK { FILTER C S }"

where s is the SPARQL ValuesClause that corresponds to the mapping µ. Note:
SPARQL Constraint and SPARQL ValuesClause as defined in the SPARQL
specification [10].

Example 8. Let µ “ tpg, "Sci-fi"q, pr, 121qu, µ1 “ tpg, "Sci-fi"q, pr, 124qu,
B “ pg, rq, L “ pg1, r1q, L1 “ pg2, r2q and C “ "(g1 = g2 && r1 > r2)".
Then,

ConstructMappingBÑL,BÑL1pµ, µ1q “ µ˚ “

"

pg1, "Sci-fi"q, pr1, 121q,
pg2, "Sci-fi"q, pr2, 124q

*

ConstructQuerypC, µ˚q “
"ASK { FILTER (?g1 = ?g2 && ?r1 > ?r2)

VALUES (?g1 ?r1 ?g2 ?r2)

{ ("Sci-fi" 121 "Sci-fi" 124) } }"

As stated earlier, our preference solution modifier expresses a preference rela-
tion between the results of the query base, therefore the meaning of the "PREFER"
clause is actually a binary predicate p such that ppµ, µ1q holds if µ is preferred
over µ1. Hence, below, the evaluation v¨wD of a "PREFER" clause takes two map-
pings as input. Recall that except from a simple Constraint , a preference relation
can be expressed using the Pareto and Prioritized preference compositors.3

Definition 8. Let D be a dataset. Also, let C be a constraint and L,L1, B be
three variable lists, s.t. |L| “ |L1| “ |B| and all variables that appear in L,L1 are
distinct. Also, let µ, µ1 be two mappings s.t. dompµq “ dompµ1q “ B, where B is
the set of all variables of B. Then,

vPREFER L TO L1 IF CwD,B “
 `

µ, µ1
˘

: vConstructQuerypC, µ˚qwD “ true,

µ˚ “ ConstructMappingBÑL,BÑL1pµ, µ1q
(

Composite clauses using the "PRIOR TO" and "AND" combinators are defined as
follows:

1. vPREFER L TO L1 IF P PRIOR TO QwD,B “ vPwD,B Ź vQwD,B,
2. vPREFER L TO L1 IF P AND QwD,B “ vP wD,B b vQwD,B,

where P “ PREFER L TO L1 IF P , Q “ PREFER L TO L1 IF Q, C is a constraint
expression and P,Q non-terminal symbols.

Notice that in Example 8, vPREFER L TO L1 IF CwDpµ, µ
1q “ true for every

dataset D, or in other words the evaluation of the corresponding preference
predicate is independent from the dataset D. This is the case for all constraint
expressions that use only built-ins. The reason why we use the construction of
this ASK query, is in the case of preferences that are defined with the use of
an EXISTS expression (see for example Listing 5). In that example, in order to
check whether a mapping is preferred from another, one has to check the dataset
D for the existence of the corresponding :sequel triple.

Having defined the meaning of preference relations, we can proceed to define
how the preference solution modifier uses a preference relation to reduce the full
result set of the query base into the preferred result set. For this, we refer to the
winnow operator wP pvQwDq which outputs the preferred result set when given
the preference relation P and the full result set vQwD (cf. Definition 3).

Definition 9. Let Q be a SELECT query. Then, we denote by ProjVarListpQq
the projection list in the same order that it appears in the SELECT clause.

Definition 10. Let D be a dataset, Q be a SELECT query and L,L1 be two
variable lists such that |ProjVarListpQq| “ |L| “ |L1| and all variables that appear
in L,L1 are distinct. Then,

vQ PREFER L TO L1 IF CwD “ wvPREFER L TO L1 IF CwD,B
pvQwDq,

where B “ ProjVarListpQq and C be a non terminal symbol.
3 We use a slightly different notation in the following definitions from the definitions

in Section 2. Instead of writing vµ ąC µ1
wD,B we write vCwD,Bpµ, µ

1
q “ true. In addi-

tion, the operators Ź and b correspond to the Prioritized and Pareto compositions.

3.3 Expressive power of SPREFQL

Winnow can be expressed using standard relational algebra operators [5]. There-
fore, a SPREFQL query, which is essentially a SPARQL 1.1 query extended with
a winnow operation, can be also expressed using standard SPARQL 1.1, using a
"NOT EXISTS" query rewriting. Given a SPREFQL query of the form

SELECT L WHERE t P u PREFER L1 TO L2 IF C

the preferred result set consists of the result mappings of the query base that
are the most preferred ones, or equivalently all mappings in the full result set
such that there does not exist any mapping that is more preferred. This fact can
be expressed using a standard SPARQL query of the following form

SELECT L WHERE t P FILTER NOT EXISTS t PtL{L1u FILTER CtL2{Lu u u

where PtL{L1u is created by P by replacing all variable names of P that appear in
L with its corresponding variable in L1, and CtL2{Lu is created by C by replacing
all variable names of C that appear in L2 with its L. The remaining variables
on the new constructions are replaced with fresh variables. If C is a Pareto or
a Prioritized composition, we first apply the rewritings into their corresponding
simple preferences (ref. Section 2, Listing 6 and Listing 7). For example, the
corresponding rewriting of Listing 1 is illustrated in Listing 8.

Comparing the two queries, we observe that the SPREFQL query is smaller
(it contains half the number of triple patterns), and it separates the definition
of preferences from the hard constraints. This separation alleviates the need
for the query author to include in the query body the actual operation that
performs the selection of the best solutions, and to express the desired definition
of preferences is more clearly. Apart from the advantages in human readability,
there exist advantages in machine optimization as well. It would be difficult for
a general purpose SPARQL optimizer to find out that in the query in Listing 8
actually implements an operation that resembles a self-join and the result can
be computed even in a single pass (as in BNL algorithm).

Listing 8. Rewriting of Listing 1 into standard SPARQL.

SELECT ?title ?genre ?runtime

WHERE {

?s a :film. ?s :title ?title. ?s :genre ?genre.

?s :runtime ?runtime.

FILTER NOT EXISTS {

?s_tmp a :film. ?s_tmp :title ?title1. ?s_tmp :genre ?genre1.

?s_tmp :runtime ?runtime1.

FILTER (?genre1 = ?genre && ?runtime1 > ?runtime) }

}

4 Experiments

4.1 Implementation and experimental setup

This section experimentally validates the idea that optimizations specific to
SPREFQL (such as efficient implementations of the winnow operator) can im-
prove the overall query performance in comparison to the equivalent standard
SPARQL query and its standard optimizations. As a proof of concept, we provide
an open source prototype implementation of SPREFQL.4 Our implementation
is developed in Java within the RDF4J framework,5 and it includes two imple-
mentations of the winnow operator (i.e using NL and BNL algorithms) and a
query rewriter which transforms a SPREFQL query into the equivalent SPARQL
query, using the "NOT EXISTS" transformation. Our evaluator has the ability to
operate over a simple memory store using the standard RDF4J evaluation mech-
anism, or over a remote SPARQL endpoint, in which the query base is executed.

In this experiment we are performing SPREFQL queries on the LinkedMDB
database. 6 Our query set contains 7 queries. The queries are: Q1: Listing 1, Q2:
Listing 3, Q3: Listing 4, Q4: Listing 3 without genre restriction, Q5: Listing 4
without genre restriction, Q6: Listing 5 and Q7: Listing 5 without the FILTER,
but for all movies that feature the character ‘James Bond’, instead.7 Firstly,
we issue the query bases for each SPREFQL query directly on the SPARQL
endpoint, and then we evaluate all SPREFQL queries, using i) the NL algorithm,
ii) the query rewriting method and iii) the BNL algorithm. The window size for
the BNL algorithm was set large enough to contain all results, since we know that
BNL behaves better if the preferred result set fits entirely in the window. The
experiment was performed on a Linux machine (Ubuntu 14.04 LTS) with a 4-core
Intel(R) Xeon(R) CPU E31220 at 3.10GHz and 30 GB RAM. The LinkedMDB
dataset was loaded into a locally deployed Virtuoso SPARQL endpoint. 8

4.2 Results

Table 2 gives the experimental results. We observe that NL has the worst query
execution times, and its performance is quadratic in the execution time of the
query base. On the first 6 queries, BNL performs better than rewriting. Since
BNL was configured so that to perform at its best, the query execution time
of BNL is in most cases almost equal to that of the query base. The difference
between the execution times of BNL and the query base in Q4 and Q5, can
be explained due to the fact that the full result set is larger and BNL has to
make more comparisons to calculate the preferred result. The rewrite method in
those cases performs much worse than BNL (but much better than NL). In Q7

4 cf. https://bitbucket.org/dataengineering/sprefql
5 cf. http://rdf4j.org
6 cf. http://www.linkedmdb.org
7 These listings are edited in the paper for conciseness. The exact queries used in the

experiment can be found at our code repository, cf. Footnote 4.
8 Community edition Version 7.1, cf. http://virtuoso.openlinksw.com

though, where an extrinsic preference is expressed, we have a different situation.
The comparisons that BNL has to make are not that many (they are at most
23 ¨ 22), but here BNL has to consider the database each time in order to decide
whether one solution is preferred over another. So, BNL issues a heavy load of
ASK queries to the endpoint, and therefore rewriting outperforms BNL in Q7.
This also explains why BNL has a comparable execution time for Q7 and Q1,
although Q1 fetches and considers orders of magnitude more results than Q7.
As Q6 also expresses an extrinsic preference, we would expect query rewriting to
outperform BNL, but the base result set is very small and the cost to prepare the
rewrite is not recuperated. Overall, in our experiments BNL performed better in
intrinsic preferences while rewriting performed better in extrinsic preferences.

In the last two queries, we observe that the number of the results that BNL
returns is greater than the expected result. This happens because here the pref-
erence relation (which is the same for Q6 and Q7) is not a transitive relation
(the :sequel is not a transitive predicate). This is a known issue of BNL, since
BNL returns the correct number of results only on preference relations that im-
pose a strict partial order (cf. Section 2). Therefore, in terms of the correctness
of the result, rewriting is better than BNL for non strict partial order intrinsic
preferences (in extrinsic preferences, rewriting is preferred anyway due to time
performance). Checking whether an intrinsic preference expression corresponds
to a strict partial order relation is not computationally challenging, as it depends
only the size of the expression itself [5, Section 3.1]. In extrinsic expressions,
transitivity needs to be confirmed extensionally by issuing "ASK" queries.

Regarding the memory footprint of the BNL algorithm, since BNL only main-
tains the current set of undominated results it is expected to require considerably
less space than the base result set. In most cases, the maximum number of re-
sults maintained in memory will be close to the final number of results. In our
experiments, only Q2 and Q4 required a slight amount of extra space, which can
happen when many results that do not dominate each other are received before
a result that dominates them.

Table 2. Number of returned results and query execution time (in milliseconds) for
NL, query rewriting, and BNL. For BNL, the number of binding sets that need to be
maintained in memory is also given, and the total number of bindings in these sets.

Query Base NL rewrite BNL

exec. num. exec. num. exec. num. exec. num. num. num.
time res. time res. time res. time bindsets bindings res.

Q1 556 6,955 1,613,515 36 4,750 36 812 36 108 36
Q2 52 390 9,124 5 188 5 65 6 18 5
Q3 52 390 10,530 8 254 8 91 8 24 8
Q4 872 9,612 3,272,789 8 197,044 8 1,238 9 27 8
Q5 872 9,612 3,452,048 108 193,338 108 2,370 108 324 108
Q6 135 4 794 1 296 1 170 2 4 2
Q7 85 23 1,276 2 93 2 820 8 16 8

5 Related Work

In the Semantic Web literature there have been proposed SPARQL extensions
that feature the expression of preferences [17], typically transferring ideas and
results from relational database frameworks much like the work presented here.

When it comes to quantitative preferences, prominent examples include the
extensions proposed by Cheng et al. [4] and Magliacane et al. [15]. Closer to
our work, influential databases research on qualitative preferences includes the
work of Kießling [11, 12]. This was used by Siberski et al. [20] to propose a
SPARQL extension using a "PREFERRING" solution modifier. Contrary to our
approach, these preferences are expressed using unary preference constructors.
These constructors are of two types: boolean preferences where the preferred el-
ements fulfill a specific boolean condition while the non-preferred do not; and
scoring preferences, denoted with a "HIGHEST" or "LOWEST" keyword, where the
preferred elements have a higher (or lower) value from the non preferred ones.
Simple preferences expressed with these constructors can be further combined
using Pareto and prioritized composition operators. Gueroussova et al. [9] further
extended this language with an "IF-THEN-ELSE" clause which allows expressing
conditional preferences that apply only if a condition holds. Conditional prefer-
ences allow several other ‘syntactic sugar’ preference constructors to be defined,
such as "AROUND" and "BETWEEN".

By comparison, the work presented here is (to the best of our knowledge)
the first one to transfer to the Semantic Web the more general framework by
Chomicki [5], allowing the expression of extrinsic preferences. Each of the basic
preference constructors (boolean, scoring and conditional preferences) as well as
the compositions in the approaches by Siberski et al. [20] and Gueroussova et al.
[9] can be transformed in SPREFQL. For example, a query of the form

SELECT ?s ?o WHERE {?s :p ?o} PREFERRING HIGHEST(?o)

can be transformed into SPREFQL:

SELECT ?s ?o WHERE {?s :p ?o} PREFER (?s1 ?o1) TO (?s2 ?o2) IF (?o1>?o2)

Since in SPREFQL the preference relation is expressed using a binary formula,
the reverse translation is not always possible (for example in Listings 1 and 5).

6 Conclusions and Future Work

In this paper we propose SPREFQL, an extension of SPARQL that allows
the query author to specify a preference that modifies the query solutions. Al-
though a SPREFQL query can be transformed into standard SPARQL, standard
SPARQL query processing misses opportunities to optimize execution by avoid-
ing the exhaustive comparison of all solution pairs. Our experiments demonstrate
that when the BNL algorithm is applicable, even for relatively small result sets
of under 10k tuples its execution can be two orders of magnitude faster than
that of state-of-art SPARQL query processors.

Our first future work direction will be to evaluate the mean gain that can be
achieved on realistic workflows. We plan to achieve this by identifying potential
test cases where the SPREFQL extensions can be used, so that we can estimate
how often the BNL optimization is applicable. This will also help us further
develop the language, identifying additional ‘syntactic sugar’ constructs that
can hint at optimizations targeting intransitive relations that fall outside the
scope of BNL. Further extensions could allow the client to refer to preferences
and preference-related metadata within the knowledge base itself [14, 18, 19].

A more ambitious future extension is to allow the client application to not
only request the most preferred results, but to also be able to request all results
ordered in different ‘layers’ of preference. This is a more general solution than
any quantitative preference ranking system, as it handles the full generality of
partially ordered preferences. We plan to base this on graph-theoretic work in
sequencing and scheduling, such as the Coffman-Graham algorithm [6] which
is widely used to visualize graphs as layers panning out of a central vertex. By
representing arbitrary (including partial-order) preference relations as a directed
graph, we can use similar layering approaches to order results in such a way that
no dominated tuple is returned before any of the tuples that dominate it.

Acknowledgements

The work described here has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No 644564.
For more details, please visit https://www.big-data-europe.eu

Bibliography

[1] Agrawal, R., Wimmers, E.L.: A framework for expressing and combining
preferences. In: Proc. 2000 ACM SIGMOD Intl Conference on Management
of Data, Dallas, Texas, USA, 16–18 May 2000. pp. 297–306 (2000)

[2] Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific Amer-
ican 284(5), 28–37 (May 2001)

[3] Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Pro-
ceedings of the 17th International Conference on Data Engineering (ICDE
2001), 2–6 April 2001, Heidelberg, Germany. pp. 421–430 (2001)

[4] Cheng, J., Ma, Z.M., Yan, L.: f-SPARQL: A flexible extension of SPARQL.
In: Proceedings of the 21st International Conference on Database and Ex-
pert Systems Applications (DEXA 2010), Bilbao, Spain, 30 Aug – 3 Sep
2010, Part I. pp. 487–494 (2010)

[5] Chomicki, J.: Preference formulas in relational queries. ACM Trans.
Database Syst. 28(4), 427–466 (2003)

[6] Coffman, E.G.J., Graham, R.L.: Optimal scheduling for two-processor sys-
tems. Acta Informatica 1 (1972), doi.org/10.1007/bf00288685

[7] Delgrande, J.P., Schaub, T., Tompits, H., Wang, K.: A classification and
survey of preference handling approaches in nonmonotonic reasoning. Com-
putational Intelligence 20(2), 308–334 (2004).

[8] Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: an
overview. Artificial Intelligence 175(7–8), 1037–1052 (2011)

[9] Gueroussova, M., Polleres, A., McIlraith, S.A.: SPARQL with qualitative
and quantitative preferences. Proceedings of the 2nd International Work-
shop on Ordering and Reasoning (OrdRing 2013), at ISWC 2013, Sydney,
Australia, 22 October 2013. CEUR Workshop Proceedings, vol. 1059 (2013).

[10] Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. Recommendation,
W3C (Mar 2013), https://www.w3.org/TR/sparql11-query

[11] Kießling, W.: Foundations of preferences in database systems. In: Proceed-
ings of 28th International Conference on Very Large Data Bases (VLDB
2002), Hong Kong, China, 20–23 August 2002. pp. 311–322 (2002)

[12] Kießling, W., Köstler, G.: Preference SQL - design, implementation, expe-
riences. In: Proc. 28th International Conference on Very Large Data Bases
(VLDB 2002), Hong Kong, China, 20–23 August 2002. pp. 990–1001 (2002)

[13] Koutrika, G., Ioannidis, Y.E.: Personalization of queries in database sys-
tems. In: Proc. 20th International Conference on Data Engineering (ICDE
2004), Boston, MA, USA, 30 March – 2 April 2004. pp. 597–608 (2004)

[14] Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Preference-based query an-
swering in Datalog+/- ontologies. In: Proceedings of the 23rd International
Joint Conference on Artificial Intelligence (IJCAI 2013), Beijing, China, 3–9
August 2013. pp. 1017–1023 (2013).

[15] Magliacane, S., Bozzon, A., Valle, E.D.: Efficient execution of top-k
SPARQL queries. In: Proceedings of ISWC 2012, Boston, MA, USA, 11–15
November 2012. Part I. LNCS, vol. 7649 (2012).

[16] Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of
SPARQL. ACM Trans. Database Syst. 34(3), 16:1–16:45 (2009),
http://doi.acm.org/10.1145/1567274.1567278

[17] Pivert, O., Slama, O., Thion, V.: SPARQL extensions with preferences: a
survey. In: Ossowski, S. (ed.) Proc. 31st Annual ACM Symposium on Ap-
plied Computing, Pisa, Italy, 4–8 April 2016. pp. 1015–1020. ACM (2016).

[18] Polo, L., Mı́nguez, I., Berrueta, D., Ruiz, C., Gómez-Pérez, J.M.: User
preferences in the web of data. Semantic Web 5(1), 67–75 (2014),
http://dx.doi.org/10.3233/SW-2012-0080

[19] Rosati, J., Noia, T.D., Lukasiewicz, T., Leone, R.D., Maurino, A.: Prefer-
ence queries with ceteris paribus semantics for linked data. In: Proc. On
the Move to Meaningful Internet Systems: OTM 2015 Confederated Inter-
national Conferences, Rhodes, Greece, 26-30 Oct 2015. LNCS, vol. 9415, pp.
423–442. Springer (2015), http://dx.doi.org/10.1007/978-3-319-26148-5 28

[20] Siberski, W., Pan, J.Z., Thaden, U.: Querying the semantic web with pref-
erences. Proceedings of ISWC 2006, Athens, GA, USA, 5–9 November 2006.
LNCS, vol. 4273, pp. 612–624. Springer (2006).

[21] Stefanidis, K., Koutrika, G., Pitoura, E.: A survey on representation, com-
position and application of preferences in database systems. ACM Trans-
actions on Database Systems 36(3), 19:1–19:45 (2011).

[22] Valle, E.D., Schlobach, S., Krötzsch, M., Bozzon, A., Ceri, S., Horrocks, I.:
Order matters! Harnessing a world of orderings for reasoning over massive
data. Semantic Web 4(2), 219–231 (2013).

