
Global RDF Vector Space Embeddings

Michael Cochez1, Petar Ristoski2, Simone Paolo Ponzetto2, Heiko Paulheim2

1 Fraunhofer FIT, 53754 Sankt Augustin, Germany
Informatik 5, RWTH University Aachen, Germany

Faculty of Information Technology, University of Jyvaskyla, Finland
michael.cochez@fit.fraunhofer.de

2 Data and Web Science Group, University of Mannheim, Germany
{petar.ristoski,simone,heiko}@informatik.uni-mannheim.de

Abstract. Vector space embeddings have been shown to perform well when using
RDF data in data mining and machine learning tasks. Existing approaches, such as
RDF2Vec, use local information, i.e., they rely on local sequences generated for
nodes in the RDF graph. For word embeddings, global techniques, such as GloVe,
have been proposed as an alternative. In this paper, we show how the idea of global
embeddings can be transferred to RDF embeddings, and show that the results are
competitive with traditional local techniques like RDF2Vec.

Keywords: Graph Embeddings, Linked Open Data, Data Mining

1 Introduction

While RDF data is graph shaped by nature, most traditional data mining and machine
learning software expect data to be in propositional form. Hence, to be used in machine
learning and data mining pipelines, RDF data needs to be transformed to propositional
feature vectors.

Recently, vector space embeddings have been proposed as a means to create low-
dimensional feature vector representations of nodes in an RDF graphs. Inspired by tech-
niques from NLP, such as word2vec [14], they train neural networks for automatically
learning the mapping of RDF nodes to feature vectors. Vector space embeddings have
been shown to outperform traditional methods for creating propositional feature vectors
from RDF [22], e.g., in tasks like content-based recommender systems [24].

Unlike the first models for RDF vector space embeddings, which are based on paths,
walks, or kernels, and therefore rely on local patterns, in this paper we present an approach
in that exploits global patterns for creating vector space embeddings, inspired by the
Global Vectors (GloVe) [20] approach for learning vector space embeddings for words
from a text corpus. We show that using the GloVe approach on the same data as the older
RDF2Vec approach does not improve the created embeddings. However, this approach
is able to incorporate larger portions of the graph, without substantially increasing the
computational time, leading to comparable results. The main contributions of this paper
are this new embedding approach and an approach to approximate all-pairs Personalized
PageRank (PPR) computation, which is used to efficiently compute such embeddings.

The rest of this paper is structured as follows. Section 2 presents an overview on related
work. In section 3, we explain the basic idea of GloVe embeddings, and show how we
transfer that idea to RDF graphs. Section 4 discusses an evaluation in different scenarios.
We close with a summary and an outlook on future work.

The source code used in this evaluation can be found from https://github.
com/miselico/globalRDFEmbeddingsISWC. Possible further developments
will also be on http://users.jyu.fi/˜miselico/software/.

2 Related Work

RDF vector space embeddings, i.e., projections of an RDF graph into a low-dimensional,
dense vector space, have recently been proposed as a means to make RDF data accessible
for propositional machine learning techniques, and shown to outperform traditional feature
generation techniques [22].

RDF2Vec [22] is one of the first approaches that uses language modeling approaches
for unsupervised feature extraction from sequences of words, and adapts them to RDF
graphs. The approach generates sequences by leveraging local information from graph
sub-structures, harvested by Weisfeiler-Lehman Subtree RDF Graph Kernels and graph
walks, and then learns latent numerical representations of entities in RDF graphs.

The RDF2Vec approach is closely related to the approaches DeepWalk [21] and Deep
Graph Kernels [31]. DeepWalk uses language modeling approaches to learn social rep-
resentations of vertices of graphs by modeling short random-walks on large social graphs,
like BlogCatalog,Flickr, and YouTube. The Deep Graph Kernel approach extends the Deep-
Walk approach, by modeling graph substructures, like graphlets, instead of graph walks.
In this paper, we pursue and deepen the idea of random and biased walks since those have
proven to be scalable even to large RDF graphs, unlike other transformation approaches,
such as graph kernels. Node2vec [7] is another approach very similar to DeepWalk, which
uses second order random walks to preserve the network neighborhood of the nodes.

Furthermore, multiple approaches for knowledge graph embeddings for the task of
link prediction have been proposed [16], which could also be considered as approaches
for generating propositional features from graphs. RESCAL [17] is one of the earliest
approaches, which is based on factorization of a three-way tensor. The approach is later ex-
tended into Neural Tensor Networks (NTN) [28], which can be used for the same purpose
(optionally using multilingual information [10]). One of the most successful approaches
is the model based on translating embeddings, TransE [2]. This model builds entity and
relation embeddings by regarding a relation as translation from head entity to tail entity.
This approach assumes that relationships between words could be computed by their vector
difference in the embedding space. However, this approach cannot deal with reflexive,
one-to-many, many-to-one, and many-to-many relations. This problem was resolved in
the TransH model [30], which models a relation as a hyperplane together with a translation
operation on it. More precisely, each relation is characterized by two vectors, the norm
vector of the hyperplane, and the translation vector on the hyperplane. While both TransE
and TransH, embed the relations and the entities in the same semantic space, the TransR
model [13] builds entity and relation embeddings in separate entity space and multiple

relation spaces. This approach is able to model entities that have multiple aspects, and
various relations that focus on different aspects of entities.

Unlike the first models for RDF vector space embeddings, which are based on paths,
walks, or kernels, and therefore rely on local patterns, the approach in this paper exploits
global patterns for creating vector space embeddings, inspired by the Global Vectors
(GloVe) [20] approach for learning vector space embeddings for words from a text corpus.

3 Global Vectors from RDF Data

The embedding method which we propose borrows the optimization problem and ap-
proach from GloVe [20]. Glove training, however, is based on the creation of a global
co-occurrence matrix from text. Consequently, in our approach we need to devise a way
to build a co-occurrence matrix from graph data. To this end, we first weigh the edges of
the graph and compute approximate personalized PageRank scores starting from each
node. The PageRank score for the other nodes (i.e., context nodes) is then used as the
absolute frequency in a matrix. This procedure is then repeated on the graph with all edges
reversed and the result is added to the co-occurrence matrix. This combined matrix is then
subsequently used for training the vectors with the original Glove approach.

3.1 The GloVe model

GloVe was designed for creating dense word vectors (also known as word embeddings)
from natural language texts, which have been recently used with much success in a plethora
of Natural Language Processing tasks. GloVe follows a distributional semantic view of
word meaning in context, which basically relies on the assumption that ‘words which are
similar in meaning occur in similar contexts’ [25] – i.e., meaning can be derived from the
context (i.e., the surrounding words) of the word in a large corpus of text.

Consequently, to build a GloVe model a word-word co-occurrence matrix is first
built, which contains for each word how often other words occur in its context. Model
parameters then include the size of the context window, whether to distinguish left context
from right context, as well as a weighting functions to weight the contribution of each
word co-occurrence – e.g., a decreasing weighting function, where word pairs that are d
words apart contribute 1/d to the total co-occurrence count.

After obtaining a co-occurrence matrix, GloVe attempts to minimize the following
cost function using Adagrad [5].

J=

V∑
i,j=1

f(Xij)
(
wTi w̃j+bi+b̃j−logXij

)2
(1)

where f(Xij) is a weighting function on co-occurrence counts of word j in the context of
word i (Xij),wi are word vectors, w̃j context vectors and bi and bj biases. The intuition
behind this cost function is the following one. Each summand of the summation represents
the amount of error attributed to a countXij in the co-occurrence matrix. The error consists
of a weighing function f , to dampen the effect of very large co-occurrence counts, and
a squared error factor. The squared error factor will become smaller when the dot product

of word vectors becomes closer to the logarithm of the probability that the words co-occur.
Or turned the other way, when two words co-occur often, their vectors’ dot product will
be relatively high, meaning that the vectors are more similar to make the error factor
smaller. The logarithm also causes that ratios of co-occurrence probabilities are associated
with differences of vectors. As a result, the embedding contains information useful for
determining analogies.

3.2 Building a Co-occurrence Matrix from Graph Data

The co-occurrence matrix for textual data is obtained by linearly scanning through the text
and counting the occurrence of context words in the context of each word. However, the
graph which we use as input data does not have a linear structure. This problem has been
worked around in the past by performing random walks starting from each of the nodes
in the graph. Recording the paths of these walks results in a linear sequence of node (and
optionally edge) labels, which can then, in turn, be used as a pseudo-text to train a model.
This approach is, for example, used in node2vec [7] and RDF2Vec [22]. However, in these
approaches, the trained model is different from the GloVe model and it does not use the
co-occurrence counts, but rather trains a neural network on the individual context windows
directly. In the case of GloVe, only the counts are needed and hence we are looking for
a method to obtain these without generating the random walks explicitly.

A possible solution would be to perform a breadth-first search of a certain depth
starting from each node in turn, and take all reachable nodes as the context of each start
node. Given these kinds of contexts, one could then straightforwardly apply GloVe’s
co-occurrence weighting and assign a lower weight to co-occurrence counts of nodes
which are further away from the focus node. However, this simple approach is problematic
in that: a) there could be nodes reachable through multiple paths at different levels, b) there
could be loops in the graph, making a walk pass through the same node multiple times,
and c) if there is a node with many context nodes at level d, but only few ones at level d−1,
then the ones at level dwill dominate the closer ones in the co-occurrence matrix as there
are that many of them.

To solve this problem, we investigate the use of Personalized PageRank [18] to de-
termine how important nodes are in the context of a focus node. In general, PageRank is
used to find important nodes in a directed graph. Its first, well-known use is the ranking
of web pages, but later PageRank has also been applied in other areas (e.g., peer-to-peer
networks [9] and social network analysis [15], among others). At its heart, PageRank
works by simulating random walkers over the graph and observing where these random
walkers end up. A simplified model which we will elaborate below would be as follows.
First, we denote the out degree of a node i as deg(i). Then, if there are n nodes in the
graph, construct an n×n matrix P filled with zeros except for positions i,j, for which
there exists an arc i→j. These positions contain 1/deg(i). Now, the simplified page rank
problem is solved by finding the stationary solution to (notation from [1] – p(i) is the
vector converging to the PageRank value for each page after i iterations.)

p(k+1)=PT p(k). (2)

This simplified version of PageRank can run into a number of problems, namely some
pages may have a zero out degree (so called dangling nodes) and there could be groups of

pages which form closed cycles. In the first case, PageRank (i.e., random walkers) will get
lost from the graph and any node linking directly or indirectly to a zero out-degree node
will get a PageRank of zero. In the second case walkers will get trapped and the pages in
the cycles will accumulate all PageRank. To amend these problems, the above equation
is adapted to include parts which ensure that when a walk ends up in a dangling node, it
will continue from another node selected from a distribution v, called the teleportation
distribution. Further, to avoid ending in a cycle, a random jump is also performed with
probabilityα to a node selected from the same distribution. Usually, v is chosen to be a uni-
form distribution, making each node equally likely to be the target of the jump. However,
in the case of personalized page rank the distribution is degenerate as the target of these
random jumps is always the node for which the rank vector is computed (which we called
the focus node). In effect, the Personalized PageRank vector indicated the importance of
nodes from the perspective of the focus node.

Computing PageRank (and also the PPR variant) is reasonably scalable. However,
as we need to compute PPR for each individual node in turn, in order to build the co-
occurrence matrix, the rapidly becomes too expensive. Moreover, the PageRank algorithm
assigns a value to all nodes in the graph. If we computed the co-occurrence matrix this
way, we would end up with a very large (in our experiments below this would become
around 500 TB) dense matrix with many small values, which have little to no impact on
the later training. Hence, we designed a faster, approximate all-pairs PPR computation
method, which results in a sparse matrix. This algorithm is based on an approximate PPR
method which we will introduce next.

3.3 BCA: A Fast Personalized PageRank Approximation

A method for faster computation of Personalized PageRank, called Bookmark-Coloring
Algorithm (BCA) was presented by Berkhin [1]. The main idea behind this method is to
create an approximation to the standard PPR such that the effort of the algorithm is only
used for these nodes which will receive a significant rank. This requires fewer compu-
tations and since nodes with no significant PageRank are not assigned a value, a sparse
representation is obtained.

An intuitive version of the BCA algorithm is as follows (for full details, see [1]). To
compute the PPR vector p(b) for a focus node b, we start by injecting a unit amount of
paint, representing the walkers in the standard personal PageRank computation, to b. From
this paint an α-portion is retained and added to the value for b in p(b). The remaining
(1− α)-portion is distributed uniformly over the out-links. This retain-and-distribute
process is then repeated recursively for all nodes which got paint injected. When a node
has a zero out degree, the outgoing paint is discarded.

This basic algorithm can be improved by choosing the order in which nodes considered
for the retain-and-distribute. It is more efficient to select nodes with a larger amount of
paint fist. To achieve this, a max priority queue, with the amount of paint as priorities is
maintained. In principle, the queue could contain an entry for each node involved in each
distribute step. However, it is more efficient to merge the separate wet paint amounts into
one entry. Hence, the queue must allow efficient finding and updating of elements. Finally,
when the amount of paint to be distributed becomes negligible (i.e., less than the parameter
ε) it gets discarded, making the resulting rank vector sparse. All these improvements are

described in more detail in the BCA paper [1]. One more technique described in the same
paper is reuse of Bookmark-Coloring Vectors (BCV – the equivalent to the PageRank
vector) for the computation of other BCVs. This is analyzed further for the case of hubs (i.e.,
nodes which correspond to a subset of important pages). The BCV is precomputed for these
pages and whenever the retain-and-distribute process forwards paint to a page p(h) in the
hub, the amount is multiplied with the BCV corresponding to p(h) and added to p(b). This
optimization makes sense when many BCVs have to be computed, which is also the case for
the co-occurrence matrix. However, since we are interested in computing the BCV for all
nodes, further enhancements are possible, as we will discuss in the following subsection.

3.4 A Fast All-Pairs PPR Algorithm
The method introduced in the previous subsection speeds up the computation of individual
PPR computations. Now, the observation leading to reuse of BCVs for pages in a hub can
be adapted to our setting. The main point is that the computation of the BCV of node b can
reuse the BCV of nodes reachable through its out links. Especially, it is beneficial if the
BCV of nodes one hop away have already been computed. Adopting this viewpoint, we say
that computation of the BCV of the node b depends on the BCV computation of all one-hop
reachable nodes and hence b is a dependent of these nodes. Now, what we want to achieve
is that we only compute the BCV for nodes once the BCVs of all its dependent nodes have
been computed. However, this will not always be feasible as the graphs contains cycles.
Hence, we want to quickly find an ordering of nodes, such that we can likely reuse as many
BCV computations as possible. To achieve this we break cycles and in that case compute
the BCV for the node at which we break without being able to count on all dependents
being available. We choose the node for breaking the cycle to be the one with the highest
in-degree as that one is likely to cause most reuse and break multiple cycles at once. The
pseudocode of the Algorithm is shown in algorithm 1, the actual implementation also
includes a couple of indexes and bitmaps to speed up the computation. Now, with the order
determined, we can compute each BCV, reusing many previously computed values.

3.5 Biasing the Random Walks
The default PageRank and BCA algorithm assume that a random walker will follow the out
edges of a node with equal likelihood. However, one can also create a setup in which given
out edges are more likely than others. For BCA, this possibility was already hinted in the
original paper [1], but not elaborated much further. This so called biasing can be accom-
plished by taking into account the out edge weights when distributing the paint over them.

Following our previous work [3], we apply twelve different strategies for assigning
these weights to the edges of the graph. These weights will then in turn bias the random
walks on the graph. In particular, when a walk arrives in a vertex vwith out edges vo1,...vod,
then the walk will follow edge vol with a probability computed by

Pr[follow edge vol]=
weight(vol)∑d
i=1weight(voi)

In other words, the normalized edge weights are directly interpreted as the probability
to follow a particular edge. To obtain these edge weights, we make use of the following
statistics computed from the RDF data:

Algorithm 1 Determining the BCV Computation Order
function B C VO R D E R(Graph &Goriginal)

G←Goriginal .Copied becauseGwill be modified in the function
Initialize listOrder . The list with the node ordering
Initialize max priority queueQindeg . The nodes in ascending in-degree
Add all nodes toQindeg

repeat
whileG has a node nwith out-degree 0 do

Add n toOrder, Remove n fromG, Remove n fromQindeg

end while
ifG is not empty then . There is a cycle which needs to be broken

n←Qindeg.pop()
Add n toOrder, Remove n fromG
for all d dependent on n do

Update priority of d inQindeg

end for
end if

untilG is empty
returnOrder

end function

Predicate Frequency for each predicate in the dataset, we count the number of times the
predicate occurs (only occurrences as a predicate are counted).

Object Frequency for each resource in the dataset, we count the number of times it
occurs as the object of a triple.

Predicate-Object frequency for each pair of a predicate and an object in the dataset, we
count the number of times there is a statement with this predicate and object.

Besides these statistics, we also use PageRank [18] computed for the entities in
the knowledge graph [29]. This PageRank is computed based on links between the
Wikipedia articles representing the respective entities. When using the PageRank com-
puted for DBpedia, not each node has a value assigned, as only entities which have
a corresponding Wikipedia page are accounted for in the PageRank computation. Ex-
amples of nodes which do not have a PageRank include DBpedia types or categories,
like http://dbpedia.org/ontology/Place and http://dbpedia.org/
resource/Category:Central_Europe. Therefore, we assigned a fixed Page-
Rank to all nodes which are not entities. We chose a value of 0.2, which is roughly the
median PageRank in the non-normalized page rank values we used.

We have essentially two types of metrics, those assigned to nodes, and those assigned
to edges. The predicate frequency and predicate-object frequency, as well as the inverses of
these, can be directly used as weights for edges. Therefore,we call these weighting methods
edge-centric. In the case of predicate frequency each predicate edge with that label is as-
signed the weight in question. In the case of predicate-object frequency,each predicate edge
which ends in a given object gets assigned the predicate-object frequency. We also use the
inverse metrics, where not the absolute frequency is assigned, but its multiplicative inverse.

In contrast, the object frequency, and also the used PageRank metric, assign a numeric
score to each node in the graph. Therefore, we call weighting approaches based on them
node-centric. To obtain a weight for the edges, we either push the weight down, meaning
that the number assigned to a node is used as the weight of all in edges, or we split the
number down, meaning that the weight is divided by the number of in edges and then
assigned to all these edges. If split is not mentioned explicitly in node centric weighting
strategies, then it is a push down strategy.

Note that uniform weights are equivalent to using object frequency with splitting the
weights. To see why this holds true, we have to follow the steps which will be taken. First,
each node gets assigned the amount of times it is used as an object. This number is equal to
the number of in edges to the node. Then, this number is split over the in edges, i.e., each
in edge gets assigned the number 1. Finally, this weight is normalized, assigning to each
out link a uniform weight. Hence, this strategy would result in the same walks as using
unbiased random walks over the graph.

So, even if we add unbiased random walks to the list of weighting strategies, we retain
12 unique ones, each with their own characteristics. These strategies, which we further
elaborated upon in our earlier work [3], are:

Uniform approach:

1. Uniform = Object Frequency Split

Edge-centric approaches:

2. Predicate Frequency
3. Inverse Predicate Frequency
4. Predicate-Object Frequency
5. Inverse Predicate-Object Frequency

Node-centric object freq. approaches (See
also strategy 1):

6. Object Frequency
7. Inverse Object Frequency
8. Inverse Object Frequency Split

Node-centric PageRank approaches:

9. PageRank
10. Inverse PageRank
11. PageRank Split
12. Inverse PageRank Split

3.6 Combining the Pieces

In earlier work on RDF graph embeddings (specifically RDF2Vec [22]), symmetric win-
dows were used on top of generated random walks,which include both node and edge labels.
These symmetric windows have the focus word in the middle and the context of the word is
both before and after it. This means that the context of a node b consists of the nodes it can
reach by following edges, as well as the nodes which can reach b. What this means is that
the result RDF2Vec would be the same, independently of whether the original walks would
be performed forward or backward. Inspired by this, we investigated the effect of creating
the co-occurence matrix as the sum of the normal PPR matrix as described above and the
PPR matrix of the graph with all edges reversed. Since a positive effect on the embeddings
was obtained (at least for the tasks we used in the evaluation) we chose to use this approach.

RDF2Vec also includes edge labels into the walks and the embedding procedure. We
also noticed a positive effect including the edge labels whenever they are traversed by

Algorithm 2 Global RDF Vector Space Embedding
function C R E AT E E M B E D D I N G S(Graph &G, Weighting Strategy W)

WeighG according toW
Order←BCV Order(G)
Compute all BCV according toOrder, reusing results
Gr←ReverseEdges(G)
WeighGr according toW
ReverseOrder←BCV Order(Gr)
Compute all BCV according toReverseOrder, reusing results
Sum the BCVs obtained for the normal and reversed graph and normalize,

forming the co-occurrence matrix.
Execute Glove training for the co-occurrence matrix.
return The resulting vectors

end function

paint with a weight equal to the amount of paint. Because the summation and additions
of the label weights might lead to a skew in the values, we normalize each BCV in the
co-occurence matrix by removing the value on the diagonal and scaling the remaining
values such that their sum is 1. This operation led to improvements in the results and hence
we adopted this technique for the overall algorithm. The pseudo code of the Global RDF
Vector Space Embedding algorithm can be found in algorithm 2.

The overall algorithm has several parameters. First, there is the weighting strategy;
the options are described above. Second, there are the parameters α and ε for the BCA
algorihm. We chose the α parameter to be 0.1 and ε=0.00001, which is within the ranges
stated by Berkhin [1]. Third, there are the parameters for the GloVe training. There is the
vector length, which we choose to be 200, which is in the middle of the sizes used in the
original Glove experiments [20]. We use 20 training iterations as we noticed that more
iterations did not significantly decrease the cost function. We used the default values for
the Adagrad learning rate and damp function.

4 Evaluation

First, we evaluate the different weighting strategies on a number of classification and
regression tasks, comparing the results of different feature extraction strategies combined
with different learning algorithms. Second, we evaluate the weighting strategies on the
task of computing document similarity. We evaluate our approach using DBpedia [12].
We use the English version of the 2016-04 DBpedia dataset, which contains 4,678,230
instances and 1,379 mapping-based properties. In our evaluation we only consider object
properties, and ignore literals. All the experiments were run using a Linux machine using
at most 300GB RAM and 24 Intel Xeon 2.60GHz CPUs. For all the weighing strategies the
processes took between 6 hours for the least demanding strategy, the Predicate Frequency
strategy, and up to 48 hours for the most demanding strategy, the Predicate-Object Fre-
quency. The runtime for building the related work approaches, using the publicly available
code,3 was more than a week.

3 https://github.com/thunlp/KB2E

Table
1:C

lassification
results.T

he
bestresultsforeach

datasetare
m

arked
in

bold.

Strategy/D
ataset

C
ities

M
etacritic

M
ovies

M
etacritic

A
lbum

s
A

A
U

P
Forbes

N
B

K
N

N
SV

M
C

4.5
N

B
K

N
N

SV
M

C
4.5

N
B

K
N

N
SV

M
C

4.5
N

B
K

N
N

SV
M

C
4.5

N
B

K
N

N
SV

M
C

4.5
U

niform
57.32

63.89
67.47

58.32
68.41

68.66
70.65

66.11
62.05

60.44
64.12

58.68
83.64

89.42
29.54

89.98
94.08

79.74
74.51

94.64
Predicate

Frequency
60.00

59.32
66.39

54.79
58.31

56.22
58.92

58.06
61.73

58.30
61.40

59.27
83.65

89.42
27.75

88.68
91.93

79.74
74.51

94.37
Inverse

Predicate
Frequency

49.08
52.16

53.05
41.97

66.32
66.62

69.73
61.63

64.90
62.56

64.52
59.33

83.21
89.42

29.84
89.00

92.48
79.74

74.51
93.70

Predicate
O

bjectFrequency
57.39

61.84
67.89

52.79
64.28

62.85
64.73

64.12
58.11

56.49
60.17

56.68
83.65

89.42
29.51

90.97
93.14

79.74
74.51

93.83
Inv.Predicate

O
bjectFreq.

54.37
63.47

60.26
47.53

62.50
65.55

67.34
61.88

61.27
64.38

62.83
59.14

82.45
89.42

29.39
89.87

93.28
79.74

74.51
93.96

O
bjectFrequency

61.89
56.32

68.42
46.16

65.65
62.85

65.04
63.97

57.72
55.91

59.20
59.59

84.08
89.42

29.42
90.96

92.87
79.74

74.51
93.43

Inverse
O

bjectFrequency
53.87

56.26
60.76

47.11
62.49

65.50
68.10

63.15
59.01

62.12
63.86

58.43
82.45

89.42
29.03

89.65
93.28

79.74
74.51

94.90
Inverse

O
bjectFreq.Split

56.79
54.29

56.26
50.21

60.76
61.27

63.77
61.32

61.35
60.70

61.86
61.73

82.45
89.42

29.60
89.76

93.28
79.74

74.51
93.96

PageR
ank

63.37
64.95

66.89
59.34

73.56
78.26

77.79
75.09

76.39
78.20

79.69
71.66

81.58
89.42

29.91
93.31

93.93
79.74

74.51
95.78

Inverse
PageR

ank
53.29

55.13
69.69

51.61
80.09

80.44
79.69

76.78
71.66

72.24
79.69

66.68
84.30

89.42
29.46

93.21
92.22

80.29
64.69

94.09
PageR

ank
Split

54.79
57.71

69.90
51.76

78.66
81.01

79.56
76.67

75.09
72.31

80.99
69.53

82.01
89.42

29.39
89.54

90.88
80.29

75.65
93.28

Inverse
PageR

ank
Split

50.66
54.21

66.99
49.71

71.68
72.13

74.64
71.32

69.85
70.76

72.05
67.78

82.78
89.42

30.70
93.09

93.02
79.74

74.51
94.91

R
D

F2V
ecG

loV
e

64.84
48.18

67.26
53.34

64.25
67.20

69.61
62.69

63.75
66.10

65.21
59.13

73.89
85.66

27.49
92.45

86.98
81.07

74.92
95.42

B
estB

aseline
72.71

60.00
71.70

75.29
78.50

66.90
79.30

70.80
74.25

64.69
77.94

64.50
63.44

91.04
93.44

92.81
67.09

76.49
76.97

76.47
D

B
TransE

65.79
75.71

74.63
61.50

65.75
64.17

68.96
61.16

62.81
60.48

64.17
56.86

80.28
84.86

28.95
89.65

92.88
79.98

74.37
95.44

D
B

TransH
64.39

72.66
76.66

60.89
63.51

63.25
67.43

60.96
63.97

63.13
65.07

60.23
80.39

84.86
27.55

89.21
93.82

79.98
74.37

93.68
D

B
TransR

63.08
67.32

74.50
59.84

64.38
60.16

64.43
52.04

63.56
59.68

66.41
60.39

79.19
84.86

28.95
89.00

93.28
79.98

74.37
93.70

B
estR

D
F2V

ec
89.73

69.16
84.19

72.25
80.24

78.68
82.80

72.42
73.57

76.30
78.20

68.70
75.07

94.48
29.11

94.15
88.53

80.58
77.79

86.38

Table 2: Classification average rank results. The best ranked results for each method are marked in bold. The learning models
for which the strategies were shown to have significant difference based on the Friedman test withα< 0.05 are marked with
*. The single values marked with ∗ mean that are significantly worse than the best strategy at significance level q=0.05

Method NB KNN* SVM* C4.5*
Uniform Weight 7.2 9.4 8.9 8.8
Predicate Frequency Weight 11.5 13 14.7 12.4
Inverse Predicate Frequency Weight 10.2 11.4 9.9 14.2*
Predicate Object Frequency Weight 10.1 12.1 11.5 10.8
Inverse Predicate Object Frequency Weight 11.7 9.2 12.6 11.9
Object Frequency Weight 9.8 13.1 11.7 11.8
Inverse Object Frequency Weight 12.3 11.2 12.3 11.9
Inverse Object Frequency Split Weight 11.5 12.8 12.7 10.9
PageRank Weight 5.2 6.2 6.6 2.6
Inverse PageRank Weight 7.4 6.4 7.5 5.8
PageRank Split Weight 8.8 5.4 4.7 9
Inverse PageRank Split Weight 9 9.4 7.1 6.2

RDF2VecGloVe 12 9.4 10 8.6
Best Baseline 9 8.8 3.4 7.2
DB TransE 9.4 9.8 10.9 9.9
DB TransH 8.6 9.4 11.2 11.6
DB TransR 9.7 11.8 11.5 12
Best RDF2Vec 7.6 2.2 3.8 5.4

4.1 Machine Learning Tasks

We use the DBpedia entity embeddings on five different datasets from different domains,
for the tasks of classification and regression, i.e., Cities4, Metacritic Movies5, Metacritic
Albums6, AAUP7 and Forbes8. Details on the dataset can be found in [23]. We follow the
same experimental setup as in our RDF2Vec paper [22], using Naive Bayes, k-Nearest
Neighbors, C4.5, and Support Vector Machine for classification, and Linear Regression,
M5Rules, and k-Nearest Neighbors for regression, measuring accuracy and root mean
squared error (RMSE) in stratified 10-fold cross validation. The results on parameter
settings for the algorithms can be found in [22].

Furthermore, from our original RDF2Vec paper [22], we report the best baseline
and the best RDF2Vec performance. As an additional baseline, we use the same set of
random walks used in [22] to build a simple GloVe model, and report the results un-
der RDF2VecGloVe. Furthermore, we compare our results to the embedding approaches
TransE, TransH, and TransR, which have shown to be scalable to large knowledge graphs.

Tables 1 and 3 depict the results for the classification and regression task. We determine
the significance in ranking of the approaches using the approach introduced by Demšar [4],
as discussed in [22]. The results are depicted in tables 2 and 4.

4 https://www.imercer.com/content/mobility/quality-of-living-city-rankings.html
5 http://www.metacritic.com/browse/movies/score/metascore/all
6 http://www.metacritic.com/browse/albums/score/metascore/all
7 http://www.amstat.org/publications/jse/jse_data_archive.htm
8 http://www.forbes.com/global2000/list/

Table
3:R

egression
results.T

he
bestresultsforeach

datasetare
m

arked
in

bold.

Strategy/D
ataset

C
ities

M
etacritic

M
ovies

M
etacritic

A
lbum

s
A

A
U

P
Forbes

L
R

K
N

N
M

5
L

R
K

N
N

M
5

L
R

K
N

N
M

5
L

R
K

N
N

M
5

L
R

K
N

N
M

5
U

niform
18.41

18.02
11.20

16.32
23.31

20.50
11.96

13.19
13.35

6.35
57.10

6.45
19.27

20.85
18.01

Predicate
Frequency

16.10
17.31

19.68
17.63

21.75
18.14

10.98
15.72

13.73
6.36

57.10
6.41

17.58
19.33

17.89
Inverse

Predicate
Frequency

21.71
16.42

14.40
20.69

21.88
18.44

12.67
13.44

12.94
6.35

57.10
6.37

18.93
20.58

18.04
Predicate

O
bjectFrequency

16.02
15.78

14.31
20.77

24.33
19.42

12.54
14.00

12.32
6.30

57.10
6.37

19.14
19.50

17.59
Inverse

Predicate
O

bjectFrequency
14.52

14.24
19.50

18.03
22.62

17.60
10.79

13.47
11.28

6.30
57.10

6.36
18.91

19.14
19.25

O
bjectFrequency

11.74
16.49

16.77
20.84

22.63
17.83

12.51
14.23

12.12
6.34

57.10
6.41

18.07
20.38

18.92
Inverse

O
bjectFrequency

15.87
18.31

15.40
18.49

22.00
18.49

13.37
14.60

13.38
6.37

57.10
6.44

17.86
19.07

17.00
Inverse

O
bjectFrequency

Split
15.96

14.01
20.52

21.40
23.32

18.94
11.61

13.20
12.63

6.40
57.10

6.43
19.62

20.31
19.87

PageR
ank

17.61
9.50

14.43
18.08

19.75
19.20

12.56
14.31

12.48
6.28

57.10
6.32

18.98
19.40

16.27
Inverse

PageR
ank

13.41
13.33

10.47
17.91

20.52
16.63

13.17
13.73

12.72
6.37

57.10
6.46

18.79
18.99

18.93
PageR

ank
Split

19.70
20.51

12.44
17.22

19.86
18.84

12.58
12.46

10.93
6.31

57.10
6.32

17.61
20.90

19.22
Inverse

PageR
ank

Split
17.22

18.63
12.65

17.76
23.09

19.82
12.04

14.17
11.90

6.36
57.10

6.39
17.42

18.93
20.10

R
D

F2V
ecG

loV
e

20.50
20.24

20.57
23.10

26.37
23.04

13.87
15.74

13.93
6.34

57.31
6.37

20.45
21.55

19.18
B

estB
aeline

17.79
18.21

17.04
21.45

21.62
19.19

13.32
13.99

12.81
8.08

34.94
6.36

19.16
19.81

18.20
D

B
TransE

14.22
14.45

14.46
20.66

23.61
20.71

13.20
14.71

13.23
6.34

57.27
6.43

20.00
21.55

17.73
D

B
TransH

13.88
12.81

14.28
20.71

23.59
20.72

13.04
14.19

13.03
6.35

57.27
6.47

19.88
21.54

16.66
D

B
TransR

14.50
13.24

14.57
20.10

23.37
20.04

13.87
15.74

13.93
6.34

57.31
6.37

20.45
21.55

17.18
B

estR
D

F2V
ec

11.92
12.67

10.19
15.45

17.80
15.50

10.89
11.72

10.97
6.26

56.95
6.29

18.35
21.04

16.61

Table 4: Regression average rank results. The best ranked results for each method are marked in bold. The learning models
for which the strategies were shown to have significant difference based on the Friedman test withα< 0.05 are marked with
*. The single values marked with ∗ mean that are significantly worse than the best strategy at significance level q=0.05

Method LR* KNN* M5*
Uniform Weight 9.2 9.7 11.4
Predicate Frequency Weight 6.7 9.5 11.3
Inverse Predicate Frequency Weight 12.2 8.3 8.5
Predicate Object Frequency Weight 9.3 10.1 7.7
Inverse Predicate Object Frequency Weight 5.3 6.9 8.4
Object Frequency Weight 7.1 10.3 9.1
Inverse Object Frequency Weight 10.5 9.7 10.6
Inverse Object Frequency Split Weight 12 8.1 12.9
PageRank Weight 8.4 6.1 6.3
Inverse PageRank Weight 8.9 5.3 8.6
PageRank Split Weight 7.4 8.9 6.3
Inverse PageRank Split Weight 7.5 9.3 10

RDF2VecGloVe 15.5* 17.5* 15*
Best Baseline 15.2* 7.2 9.2
DB TransE 10.7 14.1 11.9
DB TransH 11 11.9 11.2
DB TransR 11.7 14.1 11
Best RDF2Vec 2.4 4 1.6

We can observe that although RDF2Vec is a very strong competitor, the approach
introduced in this paper is capable of producing embeddings which outperform the results
achieved with RDF2Vec in specific cases. In particular for classification algorithms which
yield inferior results with RDF2Vec. It is also remarkable that TransE, TransH, and TransR
are often outperformed by the baselines. Furthermore, we can observe that a naive applica-
tion of the GloVe approach to walks (RDF2VecGloVe) does not lead to convincing results.

4.2 Document Modeling

Calculating entity similarity lies at the heart of knowledge-rich approaches to computing
semantic similarity, a fundamental task in Natural Language Processing and Information
Retrieval [32]. As previously mentioned, in the feature embedding space semantically
similar entities appear close to each other in the feature space. Therefore, the problem of
calculating the similarity between two instances is a matter of calculating the distance
between two instances in the given feature space. To do so, we use the standard cosine
similarity measure, which is applied on the vectors of the entities.

We use the entity similarity approach in the task of calculating semantic document sim-
ilarity. We follow an approach similar to the one presented in [19], where two documents
are considered to be similar if many entities of the one document are similar to at least one
entity in the other document. More precisely, we try to identify the most similar pairs of
entities in both documents, ignoring the similarity of all the other 1–1 similarities values.
The similarity of two documents is then defined as the average maximum similarity for
all entities in each document (see [3]).

Table 5: Document similarity results - Pearson’s linear correlation coefficient (r)
Spearman’s rank correlation (ρ) and their harmonic meanµ

Approach r ρ µ

Uniform Weight 0.537 0.535 0.536
Predicate Frequency Weight 0.534 0.532 0.533
Inverse Predicate Frequency Weight 0.632 0.621 0.627
Predicate Object Frequency Weight 0.331 0.323 0.327
Inverse Predicate Object Frequency Weight 0.541 0.544 0.542
Object Frequency Weight 0.346 0.348 0.347
Inverse Object Frequency Weight 0.523 0.547 0.534
Inverse Object Frequency Split Weight 0.504 0.513 0.509
PageRank Weight 0.488 0.485 0.486
Inverse PageRank Weight 0.429 0.481 0.454
PageRank Split Weight 0.539 0.528 0.533
Inverse PageRank Split Weight 0.512 0.511 0.512

RDF2VecGloVe 0.569 0.432 0.491
Best RDF2Vec 0.708 0.556 0.623
DB TransE 0.565 0.432 0.490
DB TransH 0.570 0.452 0.504
DB TransR 0.578 0.461 0.513
TF-IDF 0.398 0.224 0.287
AnnOv 0.590 0.460 0.517
LSA 0.696 0.463 0.556
SSA 0.684 0.488 0.570
GED 0.630 \ \
ESA 0.656 0.510 0.574
GBSS 0.704 0.519 0.598

We evaluate performance on document similarity approach using the LP50 dataset [11].
We follow standard practices and use Pearson’s linear correlation coefficient and Spear-
man’s rank correlation plus their harmonic mean as evaluation metrics. In addition to the
baselines introduced above, we compare our approach to the following approaches:

– TF-IDF: Distributional baseline algorithm.
– AnnOv: Similarity score based on annotation overlap that corresponds to traversal

entity similarity with radius 0, as described in [19].
– Explicit Semantic Analysis (ESA) [6].
– GED: semantic similarity using a Graph Edit Distance based measure [27].
– Salient Semantic Analysis (SSA), Latent Semantic Analysis (LSA) [8].
– Graph-based Semantic Similarity (GBSS) [19].

The results for the related approaches were taken from the respective papers, except
for ESA, which was taken from [19], where it is calculated via the public ESA REST
endpoint9. All results are collected in table 5. We can see that our approach, using inverse
predicate object frequency weights, outperforms the state-of-the-art approaches, as well
as the embeddings generated by RDF2Vec.

9 http://vmdeb20.deri.ie:8890/esaservice

5 Conclusion and Outlook

In this paper, we have introduced a novel approach for generating embeddings of RDF
graphs, which exploits global instead of local patterns. We have shown that it is possible
to outperform local graph embeddings techniques, in particular on document similarity.
For most other tasks similar performance can be obtained.

One key finding of this work is that weighting techniques are a crucial factor in the
overall performance. In the future, we would like to investigate this point more thoroughly,
and analyze the interplay of the dataset, the task, the learning algorithm, and the weighting
technique more formally and with more exhaustive experimentation. One way to achieve
this is by evaluating the embedding using intrinsic measures such as those suggested
in [26]. Besides, we would like to further investigate how the literals in the dataset can
be incorporated while learning the embedding. Furthermore, as GloVe embeddings are
known to work particularly well for finding analogies, we plan to adapt the approach for
predicting missing links in RDF data sets.

Acknowledgements The work presented in this paper has been partially funded by the
Junior-professor funding programme of the Ministry of Science, Research and the Arts
of the state of Baden-Württemberg (project “Deep semantic models for high-end NLP
application”), and by the German Research Foundation (DFG) under grant number PA
2373/1-1 (Mine@LOD).

References

1. Berkhin, P.: Bookmark-coloring algorithm for personalized pagerank computing. Internet
Mathematics 3(1), 41–62 (2006)

2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings
for modeling multi-relational data. In: NIPS. pp. 2787–2795 (2013)

3. Cochez, M., Ponzetto, S.P., Paulheim, H.: Biased graph walks for rdfgraph embeddings. In:
WIMS (2017)

4. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. The Journal of
Machine Learning Research 7, 1–30 (2006)

5. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and
stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

6. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based
explicit semantic analysis. In: IJCAI. pp. 1606–1611 (2007)

7. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: KDD. pp.
855–864 (2016)

8. Hassan, S., Mihalcea, R.: Semantic relatedness using salient semantic analysis. In: AAAI. pp.
884–889 (2011)

9. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for reputation
management in p2p networks. In: WWW. pp. 640–651 (2003)

10. Klein, P., Ponzetto, S.P., Glavaš, G.: Improving neural knowledge base completion with
cross-lingual projections. In: EACL (2). pp. 516–522 (2017)

11. Lee, M., Pincombe, B., Welsh, M.: An empirical evaluation of models of text document
similarity. Cognitive Science Society (2005)

12. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann,
S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia – A Large-scale, Multilingual
Knowledge Base Extracted from Wikipedia. Semantic Web Journal (2013)

13. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for
knowledge graph completion. In: AAAI. pp. 2181–2187 (2015)

14. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781 (2013)

15. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and
analysis of online social networks. In: IMC. pp. 29–42 (2007)

16. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning
for knowledge graphs. Proceedings of the IEEE 104(1), 11–33 (2016)

17. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-
relational data. In: ICML. pp. 809–816 (2011)

18. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order
to the web. Technical Report 1999-66, Stanford InfoLab (November 1999)

19. Paul, C., Rettinger, A., Mogadala, A., Knoblock, C.A., Szekely, P.: Efficient graph-based
document similarity. In: ISWC. pp. 334–349. Springer (2016)

20. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In:
EMNLP. vol. 14, pp. 1532–1543 (2014)

21. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In:
KDD. pp. 701–710 (2014)

22. Ristoski, P., Paulheim, H.: Rdf2vec: Rdf graph embeddings for data mining. In: ISWC. pp.
498–514 (2016)

23. Ristoski, P., de Vries, G.K.D., Paulheim, H.: A collection of benchmark datasets for systematic
evaluations of machine learning on the semantic web. In: ISWC (2). pp. 186–194 (2016)

24. Rosati, J., Ristoski, P., Di Noia, T., Leone, R.d., Paulheim, H.: Rdf graph embeddings for
content-based recommender systems. In: CEUR workshop proceedings. vol. 1673, pp. 23–30.
RWTH (2016)

25. Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun. ACM 8(10),
627–633 (1965)

26. Schnabel, T., Labutov, I., Mimno, D.M., Joachims, T.: Evaluation methods for unsupervised
word embeddings. In: EMNLP. pp. 298–307 (2015)

27. Schuhmacher, M., Ponzetto, S.P.: Knowledge-based graph document modeling. In: WSDM.
pp. 543–552 (2014)

28. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor networks for
knowledge base completion. In: NIPS. pp. 926–934 (2013)

29. Thalhammer, A., Rettinger, A.: PageRank on Wikipedia: Towards General Importance Scores
for Entities. In: ESWC 2016 Satellite Events, pp. 227–240 (2016)

30. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on
hyperplanes. In: AAAI. pp. 1112–1119 (2014)

31. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: KDD. pp. 1365–1374 (2015)
32. Zhang, Z., Gentile, A.L., Ciravegna, F.: Recent advances in methods of lexical semantic

relatedness - a survey. Natural Language Engineering 19(4), 411–479 (2013)

