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Abstract. Entity alignment is the task of finding entities in two knowl-
edge bases (KBs) that represent the same real-world object. When fac-
ing KBs in different natural languages, conventional cross-lingual entity
alignment methods rely on machine translation to eliminate the lan-
guage barriers. These approaches often suffer from the uneven quality
of translations between languages. While recent embedding-based tech-
niques encode entities and relationships in KBs and do not need ma-
chine translation for cross-lingual entity alignment, a significant number
of attributes remain largely unexplored. In this paper, we propose a joint
attribute-preserving embedding model for cross-lingual entity alignment.
It jointly embeds the structures of two KBs into a unified vector space
and further refines it by leveraging attribute correlations in the KBs.
Our experimental results on real-world datasets show that this approach
significantly outperforms the state-of-the-art embedding approaches for
cross-lingual entity alignment and could be complemented with methods
based on machine translation.

Keywords: cross-lingual entity alignment, knowledge base embedding,
joint attribute-preserving embedding

1 Introduction

In the past few years, knowledge bases (KBs) have been successfully used in lots
of AI-related areas such as Semantic Web, question answering and Web mining.
Various KBs cover a broad range of domains and store rich, structured real-world
facts. In a KB, each fact is stated in a triple of the form (entity, property, value),
in which value can be either a literal or an entity. The sets of entities, properties,
literals and triples are denoted by E,P, L and T , respectively. Blank nodes are
ignored for simplicity. There are two types of properties—relationships (R) and
attributes (A)—and correspondingly two types of triples, namely relationship
triples and attribute triples. A relationship triple tr ∈ E × R × E describes
the relationship between two entities, e.g. (Texas, hasCapital, Austin), while



an attribute triple tr ∈ E×A×L gives a literal attribute value to an entity, e.g.
(Texas, areaTotal, “696241.0”).

As widely noted, KBs often suffer from two problems: (i) Low coverage. Dif-
ferent KBs are constructed by different parties using different data sources. They
contain complementary facts, which makes it imperative to integrate multiple
KBs. (ii) Multi-linguality gap. To support multi-lingual applications, a growing
number of multi-lingual KBs and language-specific KBs have been built. This
makes it both necessary and beneficial to integrate cross-lingual KBs.

Entity alignment is the task of finding entities in two KBs that refer to the
same real-world object. It plays a vital role in automatically integrating multiple
KBs. This paper focuses on cross-lingual entity alignment. It can help construct
a coherent KB and deal with different expressions of knowledge across diverse
natural languages. Conventional cross-lingual entity alignment methods rely on
machine translation, of which the accuracy is still far from perfect. Spohr et
al. [21] argued that the quality of alignment in cross-lingual scenarios heavily
depends on the quality of translations between multiple languages.

Following the popular translation-based embedding models [1,15,22], a few
studies leveraged KB embeddings for entity alignment and achieved promising
results [5,11]. Embedding techniques learn low-dimensional vector representa-
tions (i.e., embeddings) of entities and encode various semantics (e.g. types)
into them. Focusing on KB structures, the embedding-based methods provide
an alternative for cross-lingual entity alignment without considering their natu-
ral language labels.

There remain several challenges in applying embedding methods to cross-
lingual entity alignment. First, to the best of our knowledge, most existing KB
embedding models learn embeddings based solely on relationship triples. How-
ever, we observe that attribute triples account for a significant portion of KBs.
For example, we count triples of infobox facts from English DBpedia (2016-04),3

and find 58,181,947 attribute triples, which are three times as many as rela-
tionship triples (the number is 18,598,409). Facing the task of entity alignment,
attribute triples can provide additional information to embed entities, but how
to incorporate them into cross-lingual embedding models remains largely unex-
plored. Second, thanks to the Linking Open Data initiative, there exist some
aligned entities and properties between KBs, which can serve as bridge between
them. However, as discovered in [5], the existing alignment between cross-lingual
KBs usually accounts for a small proportion. So how to make the best use of it
is crucial for embedding cross-lingual KBs.

To deal with the above challenges, we introduce a joint attribute-preserving
embedding model for cross-lingual entity alignment. It employs two modules,
namely structure embedding (SE) and attribute embedding (AE), to learn em-
beddings based on two facets of knowledge (relationship triples and attribute
triples) in two KBs, respectively. SE focuses on modeling relationship structures
of two KBs and leverages existing alignment given beforehand as bridge to over-
lap their structures. AE captures the correlations of attributes (i.e. whether these

3 http://wiki.dbpedia.org/downloads-2016-04

http://wiki.dbpedia.org/downloads-2016-04


attributes are commonly used together to describe an entity) and clusters entities
based on attribute correlations. Finally, it combines SE and AE to jointly embed
all the entities in the two KBs into a unified vector space Rd, where d denotes the
dimension of the vectors. The aim of our approach is to find latent cross-lingual
target entities (i.e. truly-aligned entities that we want to discover) for a source
entity by searching its nearest neighbors in Rd. We expect the embeddings of
latent aligned cross-lingual entities to be close to each other.

In summary, the main contributions of this paper are as follows:

– We propose an embedding-based approach to cross-lingual entity alignment,
which does not depend on machine translation between cross-lingual KBs.

– We jointly embed the relationship triples of two KBs with structure em-
bedding and further refine the embeddings by leveraging attribute triples of
KBs with attribute embedding. To the best of our knowledge, there is no
prior work learning embeddings of cross-lingual KBs while preserving their
attribute information.

– We evaluated our approach on real-world cross-lingual datasets from DBpe-
dia. The experimental results show that our approach largely outperformed
two state-of-the-art embedding-based methods for cross-lingual entity align-
ment. Moreover, it could be complemented with conventional methods based
on machine translation.

The rest of this paper is organized as follows. We discuss the related work
on KB embedding and cross-lingual KB alignment in Section 2. We describe our
approach in detail in Section 3, and report experimental results in Section 4.
Finally, we conclude this paper with future work in Section 5.

2 Related Work

We divide the related work into two subfields: KB embedding and cross-lingual
KB alignment. We discuss them in the rest of this section.

2.1 KB Embedding

In recent years, significant efforts have been made towards learning embeddings
of KBs. TransE [1], the pioneer of translation-based methods, interprets a rela-
tionship vector as the translation from the head entity vector to its tail entity
vector. In other words, if a relationship triple (h, r, t) holds, h + r ≈ t is ex-
pected. TransE has shown its great capability of modeling 1-to-1 relations and
achieved promising results for KB completion. To further improve TransE, later
work including TransH [22] and TransR [15] was proposed. Additionally, there
exist a few non-translation-based approaches to KB embedding [2,18,20].

Besides, several studies take advantage of knowledge in KBs to improve em-
beddings. Krompaß et al. [13] added type constraints to KB embedding models
and enhanced their performance on link prediction. KR-EAR [14] embeds at-
tributes additionally by modeling attribute correlations and obtains good results



on predicting entities, relationships and attributes. But it only learns attribute
embeddings in a single KB, which hinders its application to cross-lingual cases.
Besides, KR-EAR focuses on the attributes whose values are from a small set
of entries, e.g. values of “gender” are {Female, Male}. It may fail to model at-
tributes whose values are very sparse and heterogeneous, e.g. “name”, “label”
and “coordinate”. RDF2Vec [19] uses local information of KB structures to gen-
erate sequences of entities and employs language modeling approaches to learn
entity embeddings for machine learning tasks. For cross-lingual tasks, [12] ex-
tends NTNKBC [4] for cross-lingual KB completion. [7] uses a neural network
approach that translates English KBs into Chinese to expand Chinese KBs.

2.2 Cross-lingual KB Alignment

Existing work on cross-lingual KB alignment generally falls into two categories:
cross-lingual ontology matching and cross-lingual entity alignment. For cross-
lingual ontology matching, Fu et al. [8,9] presented a generic framework, which
utilizes machine translation tools to translate labels to the same language and
uses monolingual ontology matching methods to find mappings. Spohr et al. [21]
leveraged translation-based label similarities and ontology structures as features
for learning cross-lingual mapping functions by machine learning techniques (e.g.
SVM). In all these works, machine translation is an integral component.

For cross-lingual entity alignment, MTransE [5] incorporates TransE to en-
code KB structures into language-specific vector spaces and designs five align-
ment models to learn translation between KBs in different languages with seed
alignment. JE [11] utilizes TransE to embed different KBs into a unified space
with the aim that each seed alignment has similar embeddings, which is exten-
sible to the cross-lingual scenario. Wang et al. [23] proposed a graph model,
which only leverages language-independent features (e.g. out-/inlinks) to find
cross-lingual links between Wiki knowledge bases. Gentile et al. [10] exploited
embedding-based methods for aligning entities in Web tables. Different from
them, our approach jointly embeds two KBs together and leverages attribute
embedding for improvement.

3 Cross-lingual Entity Alignment via KB Embedding

In this section, we first introduce notations and the general framework of our
joint attribute-preserving embedding model. Then, we elaborate on the technical
details of the model and discuss several key design issues.

We use lower-case bold-face letters to denote the vector representations of
the corresponding terms, e.g., (h, r, t) denotes the vector representation of triple
(h, r, t). We use capital bold-face letters to denote matrices, and we use super-
scripts to denote different KBs. For example, E(1) denotes the representation
matrix for entities in KB1 in which each row is an entity vector e(1).
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Fig. 1: Framework of the joint attribute-preserving embedding model

3.1 Overview

The framework of our joint attribute-preserving embedding model is depicted in
Fig. 1. Given two KBs, denoted by KB1 and KB2, in different natural languages
and some pre-aligned entity or property pairs (called seed alignment, denoted by
superscript (1,2)), our model learns the vector representations of KB1 and KB2

and expects the latent aligned entities to be embedded closely.

Following TransE [1], we interpret a relationship as the translation from the
head entity to the tail entity, to characterize the structure information of KBs.
We let each pair in the seed alignment share the same representation to serve as
bridge between KB1 and KB2 to build an overlay relationship graph, and learn
representations of all the entities jointly under a unified vector space via structure
embedding (SE). The intuition is that two alignable KBs are likely to have a
number of aligned triples, e.g. (Washington, capitalOf,America) in English and
its correspondence (Washington, capitaleDes, États-Unis) in French. Based on
this, SE aims at learning approximate representations for the latent aligned
triples between the two KBs.

However, SE only constrains that the learned representations must be com-
patible within each relationship triple, which causes the disorganized distribu-
tion of some entities due to the sparsity of their relationship triples. To alleviate
this incoherent distribution, we leverage attribute triples for helping embed en-
tities based on the observation that the latent aligned entities usually have a
high degree of similarity in attribute values. Technically, we overlook specific at-
tribute values by reason of their complexity, heterogeneity and cross-linguality.
Instead, we abstract attribute values to their range types, e.g. (Tom, age, “12”)
to (Tom, age, Integer), where Integer is the abstract range type of value “12”.
Then, we carry out attribute embedding (AE) on abstract attribute triples to
capture the correlations of cross-lingual and mono-lingual attributes, and calcu-
late the similarities of entities based on them. Finally, the attribute similarity
constraints are combined with SE to refine representations by clustering enti-
ties with high attribute correlations. In this way, our joint model preserves both
relationship and attribute information of the two KBs.
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Fig. 2: An example of structure embedding

With entities represented as vectors in a unified embedding space, the align-
ment of latent cross-lingual target entities for a source entity can be conducted
by searching the nearest cross-lingual neighbors in this space.

3.2 Structure Embedding

The aim of SE is to model the geometric structures of two KBs and learn approx-
imate representations for latent aligned triples. Formally, given a relationship
triple tr = (h, r, t), we expect h + r = t. To measure the plausibility of tr, we

define the score function f(tr) = ‖h + r− t‖22. We prefer a lower value of f(tr)
and want to minimize it for each relationship triple.

Fig 2 gives an example about how SE models the geometric structures of two
KBs with seed alignment. In Phase (1), we initialize all the vectors randomly and
let each pair in seed alignment overlap to build the overlay relationship graph. In
order to show the triples intuitively in the figure, we regard an entity as a point in
the vector space and move relationship vectors to start from their head entities.
Note that, currently, entities and relationships distribute randomly. In Phase (2),
we minimize scores of triples and let vector representations compatible within
each relationship triple. For example, the relationship capitalOf would tend to
be close to capitaleDes because they share the same head entity and tail entity.
In the meantime, the entity America and its correspondence États-Unis would
move closely to each other due to their common head entity and approximate
relationships. Therefore, SE is a dynamic spreading process. The ideal state
after training is shown as Phase (3). We can see that the latent aligned entities
America and États-Unis lie together.

Furthermore, we detect that negative triples (a.k.a. corrupted triples), which
have been widely used in translation-based embedding models [1,15,22], are also
valuable to SE. Considering that another English entity China and its latent
aligned French one Chine happen to lie closely to America, SE may take the
Chine as a candidate for America by mistake due to their short distance. Nega-
tive triples would help reduce the occurrence of this coincidence. If we generate a
negative triple tr′ = (Washington, capitalOf,China) and learn a high score for
tr′, China would keep a distance away from America. As we enforce the length
of any embedding vector to 1, the score function f has a constant maximum.
Thus, we would like to minimize −f(tr′) to learn a high score for tr′.



In summary, we prefer lower scores for existing triples (positives) and higher
scores for negatives, which leads to minimize the following objective function:

OSE =
∑
tr∈T

∑
tr′∈T ′tr

(
f(tr)− αf(tr′)

)
, (1)

where T denotes the set of all positive triples and T ′tr denotes the associated
negative triples for tr generated by replacing either its head or tail by a random
entity (but not both at the same time). α is a ratio hyper-parameter that weights
positive and negative triples and its range is [0, 1]. It is important to remember
that each pair in the seed alignment share the same embedding during training,
in order to bridge two KBs.

3.3 Attribute Embedding and Entity Similarity Calculation

Attribute Embedding We call a set of attributes correlated if they are com-
monly used together to describe an entity. For example, attributes longitude,
latitude and place name are correlated because they are widely used together
to describe a place. Moreover, we want to assign a higher correlation to the
pair of longitude and latitude because they have the same range type. We use
seed entity pairs to establish correlations between cross-lingual attributes. Given
an aligned entity pair (e(1), e(2)), we regard the attributes of e(1) as correlated
ones for each attribute of e(2), and vice versa. We expect attributes with high
correlations to be embedded closely.

To capture the correlations of attributes, AE borrows the idea from Skip-
gram [16], a very popular model that learns word embeddings by predicting the
context of a word given the word itself. Similarly, given an attribute, AE wants to
predict its correlated attributes. In order to leverage the range type information,
AE minimizes the following objective function:

OAE = −
∑

(a,c)∈H

wa,c · log p(c|a), (2)

where H denotes the set of positive (a, c) pairs, i.e., c is actually a correlated
attribute of a, and the term log p(c|a) denotes the probability. To prevent all the
vectors from having the same value, we adopt the negative sampling approach
[17] to efficiently parameterize Eq. (2), and log p(c|a) is replaced with the term
as follows:

log σ(a · c) +
∑

(a,c′)∈H′a

log σ(−a · c′), (3)

where σ(x) = 1
1+e−x . H ′a is the set of negative pairs for attribute a generated

according to a log-uniform base distribution, assuming that they are all incorrect.
We set wa,c = 1 if a and c have different range types, otherwise wa,c = 2 to

increase their probability of tending to be similar. In this paper, we distinguish
four kinds of abstract range types, i.e., Integer, Double,Datetime and String
(as default). Note that it is easy to extend to more types.



Entity Similarity Calculation Given attribute embeddings, we take the rep-
resentation of an entity to be the normalized average of its attribute vectors,
i.e., e = [

∑
a∈Ae

a]
1
, where Ae is the set of attributes of e and [.]1 denotes the

normalized vector. We have two matrices of vector representations for entities

in two KBs, E
(1)
AE ∈ Rn(1)

e ×d for KB1 and E
(2)
AE ∈ Rn(2)

e ×d for KB2, where each

row is an entity vector, and n
(1)
e , n

(2)
e are the numbers of entities in KB1,KB2,

respectively.
We use the cosine distance to measure the similarities between entities. For

two entities e, e′, we have sim(e, e′) = cos(e, e′) = e·e′
||e||||e′|| = e · e′, as the length

of any embedding vector is enforced to 1. The cross-KB similarity matrix S(1,2) ∈
Rn(1)

e ×n
(2)
e between KB1 and KB2, as well as the inner similarity matrices S(1) ∈

Rn(1)
e ×n

(1)
e for KB1 and S(2) ∈ Rn(2)

e ×n
(2)
e for KB2, are defined as follows:

S(1,2) = E
(1)
AEE

(2)>
AE , S(1) = E

(1)
AEE

(1)>
AE , S(2) = E

(2)
AEE

(2)>
AE . (4)

A similarity matrix S holds the cosine similarities among entities and Si,j

is the similarity between the i-th entity in one KB and the j-th entity in the
same or the other KB. We discard lower values of S because a low similarity of
two entities indicates that they are likely to be different. So, we set the entry
Si,j = 0 if Si,j < τ , where τ is a threshold and can be set based on the average
similarity of seed entity pairs. In this paper, we fix τ = 0.95 for inner similarity
matrices and 0.9 for cross-KB similarity matrix, to achieve high accuracy.

3.4 Joint Attribute-Preserving Embedding

We want similar entities across KBs to be clustered to refine their vector repre-
sentations. Inspired by [25], we use the matrices of pairwise similarities between
entities as supervised information and minimize the following objective function:

OS = ‖E(1)
SE − S(1,2)E

(2)
SE‖

2

F

+β(‖E(1)
SE − S(1)E

(1)
SE‖

2

F + ‖E(2)
SE − S(2)E

(2)
SE‖

2

F ), (5)

where β is a hyper-parameter that balances similarities between KBs and their
inner similarities. ESE ∈ Rne×d denotes the matrix of entity vectors for one

KB in SE with each row an entity vector. S(1,2)E
(2)
SE calculates latent vectors of

entities in KB1 by accumulating vectors of entities in KB2 based on their sim-

ilarities. By minimizing ‖E(1)
SE − S(1,2)E

(2)
SE‖

2

F , we expect similar entities across
KBs to be embedded closely. The two inner similarity matrices work in the same
way.

To preserve both the structure and attribute information of two KBs, we
jointly minimize the following objective function:

Ojoint = OSE + δOS , (6)

where δ is a hyper-parameter weighting OS .



3.5 Discussions

We discuss and analyze our joint attribute-preserving embedding model in the
following aspects:

Objective Function for Structure Embedding SE is translation-based
embedding model but its objective function (see Eq. (1)) does not follow the
margin-based ranking loss function below, which is used by many previous KB
embedding models [1]:

O =
∑
tr∈T

∑
tr′∈T ′tr

max[γ + f(tr)− f(tr′), 0]. (7)

Eq. (7) aims at distinguishing positive and negative triples, and expects that
their scores can be separated by a large margin. However, for the cross-lingual
entity alignment task, in addition to the large margin between their scores, we
also want to assign lower scores to positive triples and higher scores to negative
triples. Therefore, we choose Eq. (1) instead of Eq. (7).

In contrast, JE [11] uses the margin-based ranking loss from TransE [1],
while MTransE [5] does not have this as it does not use negative triples. How-
ever, as explained in Section 3.2, we argue that negative triples are effective in
distinguishing the relations between entities. Our experimental results reported
in Section 4.4 also demonstrate the effectiveness of negative triples.

Training We initialize parameters such as vectors of entities, relations and at-
tributes randomly based on a truncated normal distribution, and then optimize
Eqs. (2) and (6) with a gradient descent optimization algorithm called Ada-
Grad [6]. Instead of directly optimizing Ojoint, our training process involves two
optimizers to minimize OSE and δOS independently. At each epoch, the two
optimizers are executed alternately. When minimizing OSE , f(tr) and −αf(tr′)
can also be optimized alternately.

The length of any embedding vector is enforced to 1 for the following rea-
sons: (i) this constraint prevents the training process from trivially minimizing
the objective function by increasing the embedding norms and shaping the em-
beddings, (ii) it limits the randomness of entity and relationship distribution in
the training process, and (iii) it fixes the mismatch between the inner product
in Eq. (3) and the cosine similarity to measure embeddings [24].

Our model is also scalable in training. The structure embedding belongs to
the translation-based embedding models, which have already been proved to be
capable of learning embeddings at large scale [1]. We use sparse representations
for matrices in Eq. (5) for saving memory. Additionally, the memory cost to
compute Eq. (4) can be reduced using a divide-and-conquer strategy.

Parameter Complexity The parameter complexity of our joint model is
O
(
d(ne + nr + na)

)
, where ne, nr, na are the numbers of entities, relationships



Table 1: Statistics of the datasets
Datasets Entities Relationships Attributes Rel. triples Attr. triples

DBP15KZH-EN
Chinese 66,469 2,830 8,113 153,929 379,684
English 98,125 2,317 7,173 237,674 567,755

DBP15KJA-EN
Japanese 65,744 2,043 5,882 164,373 354,619
English 95,680 2,096 6,066 233,319 497,230

DBP15KFR-EN
French 66,858 1,379 4,547 192,191 528,665
English 105,889 2,209 6,422 278,590 576,543

and attributes, respectively. d is the dimension of the embeddings. Considering
that nr, na � ne in practice and the seed alignment share vectors in training,
the complexity of the model is roughly linear to the number of total entities.

Searching Latent Aligned Entities Because the length of each vector always
equals 1, the cosine distance between entities of the two KBs can be calculated

as D = E
(1)
SEE

(2)>
SE . Thus, the nearest entities can be obtained by simply sorting

each row of D in descending order. For each source entity, we expect the rank
of its truly-aligned target entity to be the first few.

4 Evaluation

In this section, we report our experiments and results on real-world cross-lingual
datasets. We developed our approach, called JAPE, using TensorFlow4—a very
popular open-source software library for numerical computation. Our experi-
ments were conducted on a personal workstation with an Intel Xeon E3 3.3 GHz
CPU and 128 GB memory. The datasets, source code and experimental results
are accessible at this website5.

4.1 Datasets

We selected DBpedia (2016-04) to build three cross-lingual datasets. DBpedia is
a large-scale multi-lingual KB including inter-language links (ILLs) from entities
of English version to those in other languages. In our experiments, we extracted
15 thousand ILLs with popular entities from English to Chinese, Japanese and
French respectively, and considered them as our reference alignment (i.e., gold
standards). Our strategy to extract datasets is that we randomly selected an
ILL pair s.t. the involved entities have at least 4 relationship triples and then
extracted relationship and attribute infobox triples for selected entities. The
statistics of the three datasets are listed in Table 1, which indicate that the
number of involved entities in each language is much larger than 15 thousand,
and attribute triples contribute to a significant portion of the datasets.

4 https://www.tensorflow.org/
5 https://github.com/nju-websoft/JAPE

https://www.tensorflow.org/
https://github.com/nju-websoft/JAPE


4.2 Comparative Approaches

As aforementioned, JE [11] and MTransE [5] are two representative embedding-
based methods for entity alignment. In our experiments, we used our best effort
to implement the two models as they do not release any source code or software
currently. We conducted them on the above datasets as comparative approaches.
Specifically, MTransE has five variants in its alignment model, where the fourth
performs best according to the experiments of its authors. Thus, we chose this
variant to represent MTransE. We followed the implementation details reported
in [5,11] and complemented other unreported details with careful consideration.
For example, we added a strong orthogonality constraint for the linear trans-
formation matrix in MTransE to ensure the invertibility, because we found it
leads to better results. For JAPE, we tuned various parameter values and set
d = 75, α = 0.1, β = 0.05, δ = 0.05 for the best performance. The learning rates
of SE and AE were empirically set to 0.01 and 0.1, respectively.

4.3 Evaluation Metrics

Following the conventions [1,5,11], we used Hits@k and Mean to assess the per-
formance of the three approaches. Hits@k measures the proportion of correctly
aligned entities ranked in the top k, while Mean calculates the mean of these
ranks. A higher Hits@k and a lower Mean indicate better performance. It is a
phenomenon worth noting that the optimal Hits@k and Mean usually do not
come at the same epoch in all the three approaches. For fair comparison, we
did not fix the number of epochs but used early stopping to avoid overtraining.
The training process is stopped as long as the change ratio of Mean is less than
0.0005. Besides, the training of AE on each dataset takes 100 epochs.

4.4 Experimental Results

Results on DBP15K We used a certain proportion of the gold standards as
seed alignment while left the remaining as testing data, i.e., the latent aligned
entities to discover. We tested the proportion from 10% to 50% with step 10%,
and Table 2 lists the results using 30% of the gold standards. The variation of
Hits@k with different proportions will be shown shortly. For relationships and
attributes, we simply extracted the property pairs with exactly the same labels,
which only account for a small portion of the seed alignment.

Table 2 indicates that JAPE largely outperformed JE and MTransE, since
it captures both structure and attribute information of KBs. For JE, it employs
TransE as its basic model, which is not suitable to be directly applied to entity
alignment as discussed in Section 3.5. Besides, JE does not give a mandatory
constraint on the length of vectors. Instead, it only minimizes ‖v‖22−1 to restrain
vector length and brings adverse effect. For MTransE, it models the structures
of KBs in different vector spaces, and information loss happens when learning
the translation between vector spaces.



Table 2: Result comparison and ablation study

DBP15KZH-EN
ZH→ EN EN→ ZH

Hits@1 Hits@10 Hits@50 Mean Hits@1 Hits@10 Hits@50 Mean
JE 21.27 42.77 56.74 766 19.52 39.36 53.25 841
MTransE 30.83 61.41 79.12 154 24.78 52.42 70.45 208

JAPE
SE w/o neg. 38.34 68.86 84.07 103 31.66 59.37 76.33 147
SE 39.78 72.35 87.12 84 32.29 62.79 80.55 109
SE + AE 41.18 74.46 88.90 64 40.15 71.05 86.18 73

DBP15KJA-EN
JA→ EN EN→ JA

Hits@1 Hits@10 Hits@50 Mean Hits@1 Hits@10 Hits@50 Mean
JE 18.92 39.97 54.24 832 17.80 38.44 52.48 864
MTransE 27.86 57.45 75.94 159 23.72 49.92 67.93 220

JAPE
SE w/o neg. 33.10 63.90 80.80 114 29.71 56.28 73.84 156
SE 34.27 66.39 83.61 104 31.40 60.80 78.51 127
SE + AE 36.25 68.50 85.35 99 38.37 67.27 82.65 113

DBP15KFR-EN
FR→ EN EN→ FR

Hits@1 Hits@10 Hits@50 Mean Hits@1 Hits@10 Hits@50 Mean
JE 15.38 38.84 56.50 574 14.61 37.25 54.01 628
MTransE 24.41 55.55 74.41 139 21.26 50.60 69.93 156

JAPE
SE w/o neg. 29.55 62.18 79.36 123 25.40 56.55 74.96 133
SE 29.63 64.55 81.90 95 26.55 60.30 78.71 107
SE + AE 32.39 66.68 83.19 92 32.97 65.91 82.38 97

Additionally, we divided JAPE into three variants for ablation study, and the
results are shown in Table 2 as well. We found that involving negative triples in
structure embedding reduces the random distribution of entities, and involving
attribute embedding as constraint further refines the distribution of entities. The
two improvements demonstrate that systematic distribution of entities makes for
the cross-lingual entity alignment task.

It is worth noting that the alignment direction (e.g. ZH→ EN vs. EN→ ZH)
also causes performance difference. As shown in Table 1, the relationship triples
in a non-English KB are much sparser than those in an English KB, so that
the approaches based on the relationship triples cannot learn good representa-
tions to model the structures of non-English KBs, as restraints for entities are
relatively insufficient. When performing alignment from an English KB to a non-
English KB, we search for the nearest non-English entity as the aligned one to
an English entity, the sparsity of the non-English KB leads to the disorganized
distribution of its entities, which brings negative effects on the task. However,
it is comforting to see that the performance difference becomes narrower when
involving attribute embedding, because the attribute triples provide additional
information to embed entities, especially for sparse KBs.

Fig. 3 provides the visualization of sample results for entity alignment and
attribute correlations. We projected the embeddings of aligned entity pairs and
involved attribute embeddings to two dimensions using PCA. The left part indi-
cates that universities, countries, cities and cellphones were divided widely while
aligned entities from Chinese to English were laid closely, which met our expec-
tation of JAPE. The right part shows our attribute embedding clustered three
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Fig. 3: Visualization of results on DBP15KZH-EN
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Fig. 4: Hits@k w.r.t. proportion of seed alignment

groups of monolingual attributes (about cellphones, cities and universities) and
one group of cross-lingual ones (about countries).

Sensitivity to Proportion of Seed Alignment Fig. 4 illustrates the change
of Hits@k with varied proportion of seed alignment. In accordance with our
expectation, the results on all the datasets become better with the increase of
the proportion, because more seed alignment can provide more information to
overlay the two KBs. It can be seen that, when using half of the gold standards
as seed alignment, JAPE performed encouragingly, e.g. Hits@1 and Hits@10
on DBP15KZH-EN are 53.27% and 82.91%, respectively. Moreover, even with a
very small proportion of seed alignment like 10%, JAPE still achieved promising
results, e.g. Hits@10 on DBP15KZH-EN reaches 55.04% and on DBP15KJA-EN

reaches 44.69%. Therefore, it is feasible to deploy JAPE to various entity align-
ment tasks, even with limited seed alignment.



Table 3: Combination of machine translation and JAPE

DBP15KZH-EN
ZH→ EN EN→ ZH

Hits@1 Hits@10 Hits@50 Mean Hits@1 Hits@10 Hits@50 Mean
Machine translation 55.76 67.61 74.30 820 40.38 54.27 62.27 1,551
JAPE 41.18 74.46 88.90 64 40.15 71.05 86.18 73
Combination 73.09 90.43 96.61 11 62.70 85.21 94.25 26

DBP15KJA-EN
JA→ EN EN→ JA

Hits@1 Hits@10 Hits@50 Mean Hits@1 Hits@10 Hits@50 Mean
Machine translation 74.64 84.57 89.13 333 61.98 72.07 77.22 1,095
JAPE 36.25 68.50 85.35 99 38.37 67.27 82.65 113
Combination 82.84 94.65 98.31 9 75.94 90.70 96.04 25

Combination with Machine Translation Since machine translation is often
used in cross-lingual ontology matching [9,21], we designed a machine translation
based approach that employs Google Translate to translate the labels of entities
in one KB and computes similarities between the translations and the labels
of entities in the other KB. For similarity measurement, we chose Levenshtein
distance because of its popularity in ontology matching [3].

We chose DBP15KZH-EN and DBP15KJA-EN, which have big barriers in lin-
guistics. As depicted in Table 3, machine translation achieves satisfying results,
especially for Hits@1, and we think that it is due to the high accuracy of Google
Translate. However, the gap between machine translation and JAPE becomes
smaller for Hits@10 and Hits@50. The reason is as follows. When Google mis-
understands the meaning of labels (e.g. polysemy), the top-ranked entities are
all very likely to be wrong. On the contrary, JAPE relies on the structure infor-
mation of KBs, so the correct entities often appear slightly behind. Besides, we
found that translating from Chinese (or Japanese) to English is more accurate
than the reverse direction.

To further investigate the possibility of combination, for each latent aligned
entities, we considered the lower rank of the two results as the combined rank.
It is surprising to find that the combined results are significantly better, which
reveals the mutual complementarity between JAPE and machine translation. We
believe that, when aligning entities between cross-lingual KBs where the quality
of machine translation is difficult to guarantee, or many entities lack meaningful
labels, JAPE can be a practical alternative.

Results at Larger Scale To test the scalability of JAPE, we built three larger
datasets by choosing 100 thousand ILLs between English and Chinese, Japanese
and French in the same way as DBP15K. The threshold of relationship triples to
select ILLs was set to 2. Each dataset contains several hundred thousand entities
and several million triples. We set d = 100, β = 0.1 and keep other parameters
the same as DBP15K. For JE, the training takes 2000 epochs as reported in its
paper. The results on DBP100K are listed in Table 4. Due to lack of space, only
Hits@10 is reported. We found that similar results and conclusions stand for



Table 4: Hits@10 comparison on DBP100K
DBP100K ZH→ EN EN→ ZH
JE 16.95 16.63
MTransE 34.31 29.18
JAPE 41.75 40.13

JA→ EN EN→ JA
21.17 20.98
33.93 27.22
42.00 39.30

FR→ EN EN→ FR
22.98 22.63
44.84 39.19
53.64 50.51

DBP100K compared with DBP15K, which indicate the scalability and stability
of JAPE.

Furthermore, the performance of all the methods decreases to some extent on
DBP100K. We think that the reasons are twofold: (i) DBP100K contains quite
a few “sparse” entities involved in a very limited number of triples, which affect
embedding the structure information of KBs; and (ii) as the number of latent
aligned entities in DBP100K are several times larger than DBP15K, the TransE-
based models suffer from the increased occurrence of multi-mapping relations as
explained in [22]. Nevertheless, JAPE still outperformed JE and MTransE.

5 Conclusion and Future Work

In this paper, we introduced a joint attribute-preserving embedding model for
cross-lingual entity alignment. We proposed structure embedding and attribute
embedding to represent the relationship structures and attribute correlations of
KBs and learn approximate embeddings for latent aligned entities. Our experi-
ments on real-world datasets demonstrated that our approach achieved superior
results than two state-of-the-art embedding approaches and could be comple-
mented with conventional methods based on machine translation.

In future work, we look forward to improving our approach in several aspects.
First, the structure embedding suffered from multi-mapping relations, thus we
plan to extend it with cross-lingual hyperplane projection. Second, our attribute
embedding discarded attribute values due to their diversity and cross-linguality,
which we want to use cross-lingual word embedding techniques to incorporate.
Third, we would like to evaluate our approach on more heterogeneous KBs de-
veloped by different parties, such as between DBpedia and Wikidata.
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