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Abstract. Federated querying, the idea to execute queries over several
distributed knowledge bases, lies at the core of the semantic web vision.
To accommodate this vision, SPARQL provides the SERVICE keyword
that allows one to allocate sub-queries to servers. In many cases, however,
data may be available from multiple sources resulting in a combinatori-
ally growing number of alternative allocations of subqueries to sources.
Running a federated query on all possible sources might not be very lu-
crative from a user’s point of view if extensive execution times or fees are
involved in accessing the sources’ data. To address this shortcoming, fed-
erated join-cardinality approximation techniques have been proposed to
narrow down the number of possible allocations to a few most promising
(or results-yielding) ones.
In this paper, we analyze the usefulness of cardinality approximation for
source selection. We compare both the runtime and accuracy of Bloom
Filters empirically and elaborate on their suitability and limitations for
different kind of queries. As we show, the performance of cardinality
approximations of federated SPARQL queries degenerates when applied
to queries with multiple joins of low selectivity. We generalize our re-
sults analytically to any estimation technique exhibiting false positives.
These findings argue for a renewed effort to find novel join-cardinality
approximation techniques or a change of paradigm in query execution to
settings, where such estimations play a less important role.

Keywords: Approximate Query Processing · Bloom Filter · Federated
SPARQL · Source Selection · Web of Data

1 Introduction

At the core of the Semantic Web vision lies the possibility to ubiquitously access
distributed, machine-readable, linked data. This Web of Data (WoD) relies on
the notion of being able to access partial information from a variety of sources
that then gets combined to an integrated answer.

One major approach to achieving this functionality in a distributed fashion
is federated querying [2, 3, 7, 14, 18, 24, 25]. It relies on traditional database ap-
proaches to join partial results from multiple sources into a combined answer.



Specifically, it divides a query into subqueries and delegates the execution of
each of these subqueries to one or more remote databases, which on the WoD
are called endpoints. A query execution plan assigns the subqueries to a certain
set of endpoints and determines the order of the subquery execution. Hereby, re-
sults from one subquery can vastly reduce the computational effort of answering
another. One major problem of querying the Web of Data is source selection,
which is deciding which subqueries should be delegated to which SPARQL end-
points during query execution and which endpoints should not be considered for
query execution at all. We will focus in this paper on the cardinality of the query
answer as the metric to evaluate the worthiness of including certain sources into
query execution.

Ideally, a user would be able to estimate the cardinality of the query answer
for any subset of all relevant sources. Given the knowledge about the resulting
cardinality for different combinations of sources, a user could make an informed
decision whether a certain source should be included into the federated query
execution or not. By an informed decision we mean deciding whether selecting
and accessing a certain subset of all available endpoints is worth the time and,
potentially, fees which are associated with accessing these endpoints.

In this paper, we argue that the performance of cardinality approxi-
mations of federated SPARQL queries degenerates when applied to
queries with multiple joins having low join selectivities. This means that
such approximations are not sufficiently precise to allow a user to make an in-
formed decision. As a consequence, a user who cannot afford to query all relevant
sources for a given query must blindly exclude some relevant sources risking low
cardinality or empty query answers, even though solutions to the query would
be available on the WoD. Specifically, our contributions are:

– We show empirically that the cumulative error of cardinality estimation tech-
niques based on Bloom Filters explodes in the combinatorial distributed set-
ting of the WoD, which questions its usefulness for informed source selection.

– We show empirically that the explosion of the cumulative error often makes
join-cardinality estimation slower than executing the actual query. Hence,
using such a technique may not only lead to suboptimal results but even
slow down the query execution process, which is exactly the opposite of the
goal of source selection.

– Using a theoretical analysis of the problem, we explain why these negative
results necessarily occur when using any estimation technique exhibiting false
positives in combination with queries having low join selectivities.

The remainder of this paper is organized as follows. First, we succinctly dis-
cuss the most relevant related work. Next, Section 3 provides empirical evidence
of our claims about the limited usefulness of join approximation techniques us-
ing Bloom Filters, which is followed by a discussion of the results. In Section 4,
we present our main result: a theoretical analysis which explains the cumulative
error and associated runtime behavior that federated cardinality approximation
techniques face in the WoD. We close with some conclusions.



2 Related Work

Federated SPARQL querying and source selection: Different approaches
have been proposed to query RDF data in a federated setting. Mediator systems
like FedX [24] and DARQ [20] allow a user to query a federation of endpoints
in a transparent way while incorporating all known SPARQL endpoints into the
query answer. The federation appears to the user as one big SPARQL endpoint
holding the data of all the members of the federation. Once the members are
specified and initialized, the user can issue SPARQL queries against the mediator
without having to adapt the query for federated execution or providing any
additional information about the federation members.

Avalanche [3] and ANAPSID [2] propose different, more dynamic systems
where they relax the requirement of complete results and allow certain end-
points to fail. Their systems focus on robustness of query execution in the Web.
Avalanche [3] executes all possible queries (i.e., all combinations of possible end-
points) in parallel eventually timing out a query when the rate of incoming
results slows down. In queries with many combinations this may lead to a very
high network load and a significant time between querying and query comple-
tion. ANAPSID [2], in contrast, runs only one query plan and dispatches each
sub-query to every possible endpoint using a mediator. This results in a highly
robust execution but again, faces the danger of including a very large number
of endpoints if no sensible source-selection approach is available.

SPLENDID [9] proposed to exploit service descriptions and VoID statis-
tics about each endpoint to perform source selection and query optimization.
HiBISCuS [21] uses join-aware techniques to select relevant sources for feder-
ated query execution. HiBISCuS maintains an index which stores the authori-
ties of certain URIs. [27] introduced Fed-DSATUR, an algorithm for SPARQL
query decomposition in federated settings. They do not use statistics, indices,
or estimates for source selection.

The SPARQL 1.1 Federated Query extension [10] follows a different approach:
a user must explicitly specify which part of the query should be executed on
which server. The extension requires the user to know which SPARQL endpoint
can provide data for which subquery and rewrite the query accordingly using a
special SERVICE-clause.

Duplicate aware source selection [22] tries to eliminate sources with duplicate
data using Min-Wise Independent Permutations. [11] used Bloom Filters for
source selection of RDF sources and investigated the number of requests needed
for an approximation to achieve a certain recall.

Good estimates of the contribution of different sources towards a query an-
swer plays an important role in [16] and [17], where users have to pay for accessing
the selected sources.

In contrast to the work presented so far, we perform an empirical and the-
oretical analysis of the error behavior for the problem of source selection when
the cardinality of the result is used as the deciding factor.

Cardinality Estimation Techniques:



In the traditional database domain, join approximation has been used as a
suitable technique for approximate query processing [8]. The goal of approxi-
mate query processing is to compute an answer that approximates the query
answer without having to execute the query. Join approximations can be used
to calculate the expected cardinality and the join selectivity of a specific query.

A variety of approaches provide data synopses (i.e., summaries of the data)
for join approximation. Histograms [13] and Wavelets [8] have been used to ap-
proximate the distribution of a dataset over a given domain. Also, Bloom Filters
were first proposed as a space-efficient probabilistic data structure to approxi-
mate sets [5]. The advantage of Bloom Filters is that they allow to specify the
desired false-positive rate for set-membership checking without leading to false-
negatives. Given that they also allow intersections between bloom-filtered sets
they have become a de-facto standard for join approximations. Q-Trees [19] were
introduced as a special data summary technique for RDF data. [26] compared
the runtime and space complexity of indexing techniques, multidimensional his-
tograms, and Q-Trees and evaluated, in particular, their usefulness for source
selection and highlighted the superiority of Q-Trees over the others.
Sampling methods [15] do not rely on a synopsis but on a selection of the data.
Hence, they do not produce false positive matches but might produce false neg-
atives. Sampling methods provide a lower bound on the cardinality of a join.

Join synopses [1] are special summary structures built for join approximation.
They are constructed for specific, ex-ante known join operations and are therefore
not suitable to the purely ad-hoc federated settings. They are, however, useful
when one knows that certain joins are likely to occur.

Finally, [12] studied the propagation of errors in the size of the join result. In
this paper, we will extend the analysis done by [12] to the domain of SPARQL
queries.

3 Experimental Evaluation of the Cumulative Join
Estimation Error

The goal of this section is to show the relative error and runtime behavior of join
cardinality approximation using Bloom Filters, which motivated our theoretical
analysis of the problem and our conclusion that join approximation techniques
are problematic for source selection. We used Bloom Filters for the approxima-
tion as they provide an easy and straightforward way to encode strings like IRIs
and Literals.

In the following, we will first describe the experimental setup, including the
query approximation engine and the data we used before presenting the results.

3.1 Query Approximation Engine

We implemented a query engine that allows us to execute joins over federated
SPARQL endpoints on dynamically generated data synopses. The query en-
gine accepts a query consisting of basic graph patterns using the SPARQL 1.1



SERVICE-clause to allocate a certain Basic Graph Pattern (BGP), called ser-
vice pattern, to specified endpoints. Our approximation engine currently does not
yet support UNION-clauses, OPTIONAL-clauses and filters outside of service
patterns.

To approximate a join between two service patterns, a data synopsis of the
data matching the first service pattern is generated by the responsible endpoint.
This synopsis summarizes the bindings of the joining variables for each solution
of the assigned service pattern. The data synopsis is generated by inserting the
string representation of the bindings of a solution into a Bloom Filter. If multiple
variables are joining, the bindings are combined into one string using a special
delimiter. The endpoint responsible for the second SERVICE-clause receives the
data synopsis and does a membership check on the string representation of the
bindings of the joining variables of its assigned service pattern. The bindings for
which the membership check is positive form the basis for the join synopsis. The
join synopsis summarizes the bindings of those variables which are joining with
the next service pattern and is used as input for the next join approximation
step.

To illustrate the approximation process, Figure 1 shows how the query in
Listing 1 would be approximated. First, ep1.com receives the first service pat-
tern, consisting of only one triple pattern ?a ex:p ?x, and creates a list of
bindings for variable ?a ( 1 in Figure). These bindings get approximated by an
appropriate data synopsis 2 . The synopsis is joined with the bindings provided
by endpoint ep2.com for the second service pattern ?a ex:p ?b 3 . Note that
only variable ?a is involved in the join while a synopsis for the corresponding
bindings for variable ?b is created 4 . The second synopsis is joined with the
bindings for the third service pattern ?y ex:p ?b 5 . Since this clause is the
last one, there is no further synopsis needed. Instead, we count the number of
bindings that join with this last synopsis 6 . This number is the estimated car-
dinality of the join between the three service patterns when they are assigned to
the sources according to the federated query in Listing 1.

Listing 1. A SPARQL query with 3 Service Patterns, each consisting of 1 Triple
Pattern.

PREFIX ex: <http :// example.com/>

SELECT * WHERE {

SERVICE <http :// ep1.com > {

?a ex:p ?x . }

SERVICE <http :// ep2.com > {

?a ex:q ?b . }

SERVICE <http :// ep3.com > {

?y ex:r ?b . }

}
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Fig. 1. Approximating the query in Listing 1 using our approximation engine.

3.2 Experimental Setup

For our evaluation, we investigated the scenario where each triple pattern must
be sent to a different source. This means that it is not possible to form exclusive
groups to speed up query processing/approximation, as proposed by [24].

For the evaluation, we used FedBench [23] as a benchmark. FedBench consists
of 25 queries and more than 200 million triples distributed over 9 datasets. Since
we do not support UNION or OPTIONAL-clauses at the moment, we removed
queries containing those clauses from our evaluations. To give a baseline for the
execution time of the different approximation techniques, we executed each query
using the query engine Jena ARQ1. We used the SERVICE-clause to direct each
triple pattern to a separate SPARQL endpoint. We used Blazegraph2 as a triple
store. Table 1 shows the queries used, their runtime in milliseconds when using
Jena ARQ, the actual cardinality of the query answer, and the number of triple
patterns in the query.

We simulated both, query execution using Jena ARQ and the approximations
using Bloom Filters, with a network speed of 10 Mbps, which is around the
average speed of the top 10 countries in the world [4]. For the query execution,
we adapted Jena ARQ to do block-nested-loop joins with a block size of 500
bindings to reduce the number of HTTP-connections, which have a negative
impact on the runtime behavior of federated query execution. In addition, we
optimized the join order of the different queries using simple heuristics to keep

1 https://jena.apache.org
2 https://www.blazegraph.com



query execution in a reasonable time-frame. The query execution and all query
approximations used the same join ordering to keep the results comparable.

For the Bloom Filter implementation, we used the Guava Google Core Li-
brary for Java3.

Table 1. The execution time, count, and number of triple patterns of the different
queries.

Query Time [ms] Cardinality Triple patterns

CD3 2.50E+03 2 5

CD4 3.90E+02 1 5

CD5 4.80E+02 2 4

CD6 1.30E+03 11 4

CD7 5.70E+02 1 4

LS3 3.80E+04 9054 5

LS4 5.20E+02 3 7

LS5 1.02E+02 393 6

LS6 4.40E+05 28 5

LD1 6.90E+02 308 3

LD2 4.70E+02 185 3

LD3 7.60E+02 159 4

LD4 3.10E+03 50 5

LD5 3.00E+02 28 3

LD6 6.20E+02 39 5

LD7 1.50E+03 1216 2

LD8 5.90E+02 22 5

LD9 3.20E+02 1 3

LD10 2.90E+02 3 3

LD11 2.00E+03 376 5

3.3 Results

Figure 2 shows the absolute value of the relative error and the relative execution
time of the approximation both computed with respect to the actual runtime
and count when running the query in a federated fashion using Jena ARQ.

The relative error erel is defined as

erel =
cardest − cardactual

cardactual
,

where cardest is the estimated cardinality of the query answer based on the
approximation and cardactual is the actual cardinality of the query answer.

3 https://github.com/google/guava



The relative execution time trel is defined as

trel =
test
tactual

,

where test is the runtime of the approximation technique and tactual is the run-
time of the query execution using Jena ARQ.

Clearly, a relative runtime of less than 1 is desirable, as otherwise it would
be faster to execute the query and get the actual cardinality. For the relative
error, it is not so clear what kind of error would still be in an acceptable range.

Each plot in Figure 2 shows the relative error (solid line) and relative exe-
cution time (dashed line). We measured the error and execution time for false
positive rates of fpp = 0.1, 0.01, 10−4, 10−8.

As we can see in Figure 2, the runtime of the Bloom Filter approximation
is very often disappointing. The approximation tends to require considerably
more time for the approximation than the actual query execution. Surprisingly,
the execution time for those approximations often improves when increasing
the size of the underlying data synopsis. The discussions in Section 4 provide a
good explanation for this behavior: the more accurate the synopsis, the less false
positives must be processed. The overhead in processing more false positives
seem to have a bigger negative impact on the runtime than the reduction of
the size of the synopsis. This behavior somewhat counteracts the actual purpose
of a data synopsis to provide a trade-off between less accurate information and
reduced processing time.

Discussion of selected queries: The Bloom Filter approximation shows
good results for the runtime of queries LS3, LS5, LS6, LD2, and LD4. Also, the
error is comparably low and most of the time below 1. For those queries, the
approximation can be considered successful: the approximation is able to return
a reasonable approximation of the result size while running considerably faster
than the actual query execution.

Queries CD7, LS4, and LD11 show worse approximation for a false positive
probability of 10−8 than for a probability of 10−4. One likely explanation for
this is the fact that the original false positive analysis done by [5] is incomplete
and only gives a lower bound on the false positive rate. Indeed, as [6] points out,
the actual false positive rate might be worse than expected when a small value
for the false-positive probability is chosen as a parameter and a large number of
hash functions have to be used in the filters.

The approximation yields a relative error of 0 for the query LD9. The reason
for this behavior is that the last triple pattern only matches one single triple.
Thus, our approximation engine predicts a cardinality of at most 1, because
the prediction is based on the number of those triples matching the last triple
pattern which also join the synopsis of the previous joins, which can never be
larger than the number of triples matching the last triple pattern. At the same
time, the actual result of the query is also 1. Hence, approximation technique
which overestimate the cardinality will yield a perfect prediction, necessarily.
However, the relative runtime of the approximation methods is around 1.



The query LD4 is another one where the last triple pattern only matches one
single triple. Again, our approximation engine predicts a cardinality of at most
1. But this time, the actual result is not 1 but 50. In fact, all 50 different results
have the same binding for the last joining variable. As the Bloom Filter does
not account for duplicated values the approximation wrongly predicts 1 instead
of 50. At the same time, the approximation speed profits slightly from this error
by yielding a faster execution time.

4 Theoretical Analysis of the Cumulative Join Estimation
Error

In this section, we investigate to theoretical foundations which can explain the
disapointing performance of our Bloom Filter join approximation. We will esti-
mate the cumulative error for WoD queries for approximation techniques that
overestimate the results due to false positives, which includes all data synopses
which are not based on sampling, in particular, our Bloom Filter-based method.
Such overestimating data synopses can lead to false-positive matches (i.e., the
prediction of a match where there is none) due to loss of information. When
approximating multiple joins, the result of the first join (including its false pos-
itives) is again encoded as a data synopsis passed to the second join, which will
now attempt to match all encoded elements including the false-positives. Hence,
the error of the synopsis gets propagated through each join and accumulates
[12].

We now formally discuss the propagation of the error in a multi-join, that
is, a sequence of joins where the output of one join is an input for the next join.
For this we extend the formula for the error derived by [12] by analyzing the
relation between the rate of false positive matches and the join selectivity based
on the following assumption:

Assumption 1 All joins are equality inner-joins.

Assumption 1 is motivated by the fact that we do not consider filter expressions
in our evaluation and hence, we only support equality joins. We will not discuss
outer joins because their cardinality estimation is trivial.

Assume we want to approximate the join result of joining m+ 1 basic graph
patterns bgp0, . . . , bgpm. We define ni for i ∈ {0, . . . ,m} as the number of results
selected by BGP bgpi from the corresponding dataset. Let nFP

i be the number
of false positives at step i, which is the number of elements that are wrongly
classified as a match given the synopsis from the previous joins. We define the
false positive rate fpri as the ratio between nFP

i and ni.
Let propFP

i for i ∈ {1, . . . ,m} be the propagation rate of the false positives
in the synopsis for the join approximation between bgp0, . . . , bgpi−1. The propa-
gation rate indicates how many false-positives matches are produced on average
by a single false-positive propagated from previous join approximations.

The expected number of false positives FPk for the approximation of the join
of bgp0, . . . , bgpk is the number of false positives introduced by fprk for bgpk plus
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the false-positives given the false-positives FPk−1 of the approximation of the
join of bgp0, . . . , bgpk−1:

FPk = fprk · nk︸ ︷︷ ︸
synopsis error

+ propFP
k · FPk−1︸ ︷︷ ︸

propagated error

. (1)

We define FP0 := 0, as there is no propagated error influencing the first join
operation. Applying Equation 1 recursively gives the following formula for the
number of false positives FPm of the approximation of the join of bgp0, . . . , bgpm:

FPm =

m∑
i=1

fpri · ni ·
m∏

j=i+1

propFP
j . (2)

To compare the number of false positive matches with the number of true
positive matches, we analogously compute the number of true positives TPm.
To do that we define the propagation rate of the true-positives propTP

i for the
join between bgp0, . . . , bgpi−1 (just like we defined the propagation rate propFP

i

for false-positives). Using this definition, the number of true positives TPk of
joining bgp0, . . . , bgpk is:

TPk = n0 ·
k∏

j=1

propTP
j . (3)

To continue our analysis, we introduce the following assumption:

Assumption 2 False-positive matches and true-positive matches have the same
propagation rate, i.e. propFP

j = propTP
j =: propj.

Assumption 2 is motivated by the fact that the propagation rate of both, true
positives and false positives, are influenced by the type of URI and not by the
fact whether they are false or true positive. For example, there is an average
number of addresses joining with a person, independent of whether the person is
true or false positive. Hence, we assume that there is no bias which would cause
that a true positive match has, on average, a lower/higher propagation rate than
a false positive match.

Under Assumption 2, we get the following formula for the relative error E of
the approximation:

E =
FPm

TPm
=

m∑
i=1

fpri · ni ·
m∏

j=i+1

propj

n0 ·
m∏
j=1

propj

(4)

=

m∑
i=1

fpri · ni

n0 ·
i∏

j=1

propj

.



We define the selectivity selbgp0,...,bgpj
of the join between bgp0, . . . , bgpj as

the number of results of the join divided by the product n0 · · · · · nj , i.e. the
cardinality of the cross product of all results for bgp0, . . . , bgpj . It follows that:

n0 ·
i∏

j=1

propj = selbgp0,...,bgpj
·

i∏
j=0

nj (5)

and consequently:

E =

m∑
i=1

fpri

selbgp0,...,bgpi ·
i−1∏
j=0

nj

. (6)

Equation 6 shows that the higher the number of joins and the lower the
join-selectivities selbgp0,...,bgpj

are, the smaller the false positive rate fpri of the
approximation must be to produce a reasonably small estimation error. Thus,
the approximation error is determined by the ratio between the false positive
rate and selectivity and not “just” the false positive rate. In addition, this
error does not only lead to inaccurate results but also has a negative impact
on the execution time of the approximation: If the selectivities are low and the
false-positive rates relatively high, it can happen that the query approximation
mainly processes false-positives and that the data synopses based on these false-
positives are larger than the actual data of all true-positives. Thus, the query
approximation might take longer than the actual query execution.

Note that these theoretical findings should be cause for concern for building
federated query systems in the light of false positive baring data synopses. In
the next section, we will explore if these theoretical considerations apply to
the practical Web of Data setting that we are currently exploring in federated
querying.

Verification of the Analysis: We want to verify that our theoretical anal-
ysis indeed serves as an explanation of the error and runtime behavior that we
observed in Section 3. For this, we compared the estimated error predicted by
our analysis with the actual error which we observed in our evaluation. Figure
3 plots the estimated error based on equation 6 against the actual relative error
measured for the Bloom Filter approximation in a log-log scale (as the values
include both very small and very large numbers). Figure 3 suggests a very strong
correlation between relative error of the estimation and the predicted error by
our analysis. Indeed, both the Pearson correlation coefficient R2 = 0.81 and the
Spearman’s Rank Correlation ρ = 0.76 between the actual (non-log) numbers
indicate a strong correlation between the theoretical estimation of the error and
the actual evaluation. Not included in the figure, but included in the calculation
of the correlation coefficients are those estimates that produced a relative error
of 0, which could not be drawn in the log-log scale plot.

The figure shows that for a false positive probability of 10−8 (indicated by
little pluses “+” mostly at the top left of the Figure) the actual error is not as
small as one might expect. One likely explanation for this is the fact that the



specified false positive rate only gives a lower bound on the actual false positive
rate, as we already discussed in Section 3.

Overall, Figure 3 confirms the theoretical analysis of the error accumulation
in Equation 6, which indicates that SPARQL queries require data synopses with
very low false-positive rates to produce reasonably accurate results – an effect
which is much more pronounced for queries with a low selectivity, as we have
shown in Equation 6. This, in turn, might require specific implementations of
Bloom Filters that can handle such low probabilities. However, the need for
such accurate synopses make it questionable whether join approximations that
produce false positives are suitable for such tasks, in general.
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Fig. 3. Estimated error plotted against actual error.

5 Limitations and Future Work

In this paper, we focused our evaluations on queries which did not include
UNION, OPTIONALs, and FILTERs outside of service patterns. However, we
think, given the performance of our Bloom Filter approximation in this simpler
setting, one cannot expect the approximations to perform better when extending
the evaluation to include more complex queries. In particular, joins over multiple
variables are likely to further constrain a join offering even more potential for
synopses to generate false positives. UNIONS can be seen as a conjunction of
multiple queries, which does not pose a significantly different setting. We will
have to consider OPTIONALs in future work, though our intuition indicates
that they can be seen as a combination of two different queries, which should
not impact our results. FILTER expressions are more complex and warrant fu-
ture work, as they might impact synopses construction. In particular, when a



filter compares two bindings from different sources it can only be applied after
the join, which may require executing it on the actual data (rather than only on
a synopsis), anyway.

Obviously, Bloom Filters represent only a one possible method to estimate
the join-cardinality of SPARQL queries. Our theoretical considerations, however,
are based on the fact that most synopses have false positives, so we do expect
these findings to generalize.

Our assumption that each triple pattern must be sent to a different source
results in a high number of joins between different endpoints. In practice, it
could be that many queries may not have to be distributed to such an extent and
subqueries with multiple triple patterns may be answered by a single endpoint.
As the WoD grows, however, we are likely to see a rising number of queries that
are getting bigger and are increasingly distributed. Hence, we believe that our
findings do point to a core problem of federated querying on the Web of Data.

6 Conclusion

This paper set out to investigate the applicability of query approximation for
source selection. We hypothesized that the performance of cardinality approxi-
mations of federated SPARQL queries degenerates when applied to queries with
multiple joins of low selectivity. Indeed, both our empirical evaluation and our
theoretical considerations indicate that data synopses are not suitable for this
task due to their cumulative error, which also substantially slows down the esti-
mation process. Based on our analysis, one can only expect good approximation
performance if (1) the number of joins is low, (2) the join-selectivity is high,
and/or (3) there is a bias which causes true positive matches to have a much
higher propagation rate than false positive matches. These findings seriously
hamper the usefulness of current selectivity estimation techniques for domains
such as the WoD, where the number of joins involved in the estimation process
is high. Indeed, our focus on a setting with many joins pinpointed a deficit in the
generalizability of selectivity estimation techniques which came from a domain
where usually only few inter-domain-joins are to be expected.

It is important to note that whilst this paper focused on federated SPARQL-
querying in the context of the WoD our findings generalize to any federated
conjunctive querying setting where join estimates cannot be precomputed.

The consequence of our work is twofold: First, to fulfil the Semantic Web
vision via federated querying requires a renewed effort to find suitable join-
approximations for federated SPARQL queries. As the WoD progresses, we will
require more sophisticated approximation techniques, which are more adapted
to the WoD: i.e., the need to be able to handle many inter-source joins and
low selectivity better. Note, however, that no matter what new technique gets
introduced, in the presence of low selectivity, our analysis of the error propa-
gation adds a limit to what can be achieved by join-approximations that cause
false-positives.



Second, if the community does not manage to drastically improve approxi-
mation techniques, there might be a need to consolidate datasets from different
sources into more centralized structures to reduce the number of endpoints that
must be accessed during federated query execution. This centralization will allow
computing better estimations or incorporating them into the indices.

In conclusion, our findings showed that we may have to rethink well-known
techniques such as the concept of join-approximation when applying them to the
WoD. Doing so, will both advance our understanding of these techniques and
may cause us to rethink the structure of the Web of Data as a whole.
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