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Abstract. SPARQL query answering in ontology-based data access (OBDA) is
carried out by translating into SQL queries over the data source. Standard transla-
tion techniques try to transform the user query into a union of conjunctive queries
(UCQ), following the heuristic argument that UCQs can be efficiently evaluated
by modern relational database engines. In this work, we show that translating to
UCQs is not always the best choice, and that, under certain conditions on the
interplay between the ontology, the mappings, and the statistics of the data, al-
ternative translations can be evaluated much more efficiently. To find the best
translation, we devise a cost model together with a novel cardinality estimation
that takes into account all such OBDA components. Our experiments confirm
that (i) alternatives to the UCQ translation might produce queries that are orders
of magnitude more efficient, and (ii) the cost model we propose is faithful to the
actual query evaluation cost, and hence is well suited to select the best translation.

1 Introduction

The paradigm of Ontology-based Data Access (OBDA) [17] presents to the end-users a
convenient virtual RDF graph [13] view of the data stored in a relational database. Such
RDF graph is realized by means of the TBox of an OWL 2 QL ontology [16] connected
to the data source through declarative mappings [7]. SPARQL query answering [10]
over the RDF graph is not carried out by actually materialising the data according to
the mappings, but rather by first rewriting the user query with respect to the TBox, and
then translating the rewritten query into an SQL query over the data.

In state-of-the-art OBDA systems [5], such SQL translation is the result of struc-
tural optimizations, which aim at obtaining a union of conjunctive queries (UCQ). Such
an approach is claimed to be effective because (i) joins are over database values, rather
than over URIs constructed by applying mapping definitions; (ii) joins in UCQs are
performed by directly accessing (usually, indexed) database tables, rather than mate-
rialized and non-indexed intermediate views. However, the requirement of generating
UCQs comes at the cost of an exponential blow-up in the size of the user query.

A more subtle, sometimes critical issue, is that the UCQ structure accentuates the
problem of redundant data, which is particularly severe in OBDA where the focus is
on retrieving all the answers implied by the data and the TBox: each CQ in the UCQ
can be seen as a different attempt of enriching the set of retrieved answers, without any
guarantee on whether the attempt will be successful in retrieving new results. In fact,
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it was already observed in [2] that generating UCQs is sometimes counter-beneficial
(although that work was focusing on a substantially different topic).

As for the rewriting step, Bursztyn et al. [3,4] have investigated a space of al-
ternatives to UCQ rewritings, by considering joins of UCQs (JUCQs), and devised a
cost-based algorithm to select the best alternative. However, the scope of their work
is limited to the simplified setting in which there are no mappings and the extension
of the predicates in the ontology is directly stored in the database. Moreover, they use
their algorithm in combination with traditional cost models from the database literature
of query evaluation costs, which, according to their experiments, provide estimations
close to the native ones of the PostgreSQL database engine.

In this work we study the problem of alternative translations in the general setting
of OBDA, where the presence of mappings needs to be taken into account. To do so,
we first study the problem of translating JUCQ rewritings such as those from [3], into
SQL queries that preserve the JUCQ structure while maintaining property (i) above, i.e.,
the ability of performing joins over database values, rather than over constructed URIs.
We also devise a cost model based on a novel cardinality estimation, for estimating the
cost of evaluating a translation for a UCQ or JUCQ over the database. The novelty in
our cardinality estimation is that it exploits the interplay between the components of an
OBDA instance, namely ontology, mappings, and statistics of the data, so as to better
estimate the number of non-duplicate answers.

We carry out extensive and in-depth experiments based on a synthetic scenario built
on top of the Winsconsin Benchmark [8], a widely adopted benchmark for databases,
so as to understand the trade-off between a translation for UCQs and JUCQs. In these
experiments we observe that: (i) factors such as the number of mapping assertions, also
affected by the number of axioms in the ontology, and the number of redundant answers
are the main factors for deciding which translation to choose; (ii) the cost model we
propose is faithful to the actual query evaluation cost, and hence is well suited to select
the best alternative translation of the user query; (iii) the cost model implemented by
PostgreSQL performs surprisingly poorly in the task of estimating the best translation,
and is significantly outperformed by our cost model. The main reason for this is that
PostgreSQL fails at recognizing when different translations are actually equivalent, and
may provide for them cardinality estimations that differ by several orders of magnitude.

In addition, we carry out an evaluation on a real-world scenario based on the NPD
benchmark for OBDA [14]. Also in these experiments we confirm that alternative trans-
lations to the UCQ one may be more efficient, and that the same factors already identi-
fied in the Winsconsin experiments determine which choice is best.

The rest of the paper is structured as follows. Section 2 introduces the relevant
technical notions underlying OBDA. Section 3 provides our characterization for SQL
translations of JUCQs. Section 4 presents our novel model for cardinality estimation,
and Section 5 the associated cost model. Section 6 provides the evaluation of the cost
model on the Wisconsin and NPD Benchmarks. Section 7 concludes the paper. Due to
space limitation, more details of the techniques, proofs and experiments are provided in
an online report [15]. The materials to reproduce the experiments are available online
(https://github.com/ontop/ontop-examples/tree/master/iswc-2017-cost).

https://github.com/ontop/ontop-examples/tree/master/iswc-2017-cost
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2 Preliminaries

In this work, we use the bold font to denote tuples (when convenient we might treat
tuples as sets). Given a tuple of function symbols f = (f1, . . . , fn) and of variables x, we
denote by f(x) a tuple of terms of the form (f1(x1), . . . , fn(xn)), with xi ⊆ x, 1 ≤ i ≤ n.
We assume some familiarity with basic notions from probability calculus and statistics.
We rely on the OBDA framework of [17], which we formalize here through the notion
of OBDA specification, which is a triple S = (T ,M, Σ) where T is an ontology TBox,
M is a set of mappings, and Σ is the schema of a relational database.

We assume that ontologies are formulated in DL-LiteR [6], which is the DL pro-
viding the formal foundations for OWL 2 QL, the W3C standard ontology language for
OBDA [16]. A DL-LiteR TBox T is a finite set of axioms of the form C v D or P v R,
where C, D are DL-LiteR concepts and P , R are roles, following the DL-LiteR gram-
mar. A DL-LiteR ABox A is a finite set of assertions of the form A(a), P (a, b), where A
is a concept name, P a role name, and a, b individuals. We call the pair O = (T ,A) a
DL-LiteR ontology.

We consider here first-order (FO) queries [1], and we use qD to denote the evalua-
tion of a query q over a database D. We use the notation qA also for the evaluation of q
over the ABox A, viewed as a database. For an ontology O, we use cert(q,O) to denote
the certain answers of q over O, which are defined as the set of tuples a of individuals
such that O |= q(a) (where |= denotes the DL-LiteR entailment relation). We consider
also various fragments of FO queries, notably conjunctive queries (CQs), unions of CQs
(UCQs), and joins of UCQs (JUCQs) [1].

Mappings specify how to populate the concepts and roles of the ontology from the
data in the underlying relational database. A mapping m is an expression of the form
L(f(x))  qm(x): the target part L(f(x)) of m is an atom over function symbols1 f and
variables x whose predicate name L is a concept or role name; the source part qm(x) of
m is a FO query with output variables2 x. We say that the signature sign(m) of m is the
pair (L, f), and that m defines L. We also define sign(M) = {sign(m) | m ∈M}.

Following [9], we split each mapping m = L(f(x))  qm(x) in M into two parts
by introducing an intermediate view name Vm for the FO query qm(x). We obtain a
low-level mapping of the form Vm(x)  qm(x), and a high-level mapping of the form
L(f(x))  Vm(x). In the following, we abstract away the low-level mapping parts, and
we consider M as consisting directly of the high-level mappings. In other words, we
directly consider the intermediate view atoms Vm as the source part, with the semantics
V Dm = qDm, for each database instance D. We denote by ΣM the virtual schema consist-
ing of the relation schemas whose names are the intermediate view symbols Vm, with
attributes given by the answer variables of the corresponding source queries.

From now on we fix an OBDA specification S = (T ,M, Σ). Given a database
instance D for Σ, we call the pair (S,D) an OBDA instance. We call the set of as-
sertions A(M,D) =

{
L(f(a)) | L(f(x))  V (x) ∈M and a ∈ V (x)D

}
the virtual ABox

1 For conciseness, we use here abstract function symbols in the mapping target. We remind that
in concrete mapping languages, such as R2RML [7], such function symbols correspond to IRI
templates used to generate object IRIs from database values.

2 In general, the output variables of the source query might be a superset of the variables in the
target, but for our purposes we can assume that they coincide.
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exposed by D throughM. Intuitively, such an ABox is obtained by evaluating, for each
(high level) mapping m, its source view V (x) over the database D, and by using the
returned tuples to instantiate the concept or role L in the target part of m. The cer-
tain answers cert(q, (S,D)) to a query q over an OBDA instance (S,D) are defined as
cert(q, (T ,A(M,D))).

In the virtual approach to OBDA, such answers are computed without actually ma-
terializing A(M,D), by transforming the query q into a FO query qfo formulated over the
database schema Σ such that qD

′
fo = cert(q, (S,D′)), for every OBDA instance (S,D′).

To define the query qfo , we introduce the following notions:
– A query qr is a perfect rewriting of a query q′ with respect to a TBox T , if

cert(q′, (T ,A)) = qAr for every ABox A [6].
– A query qt is anM-translation of a query q′, if qDt = q′A(M,D) , for every database
D for Σ [17].

Notice that, by definition, all perfect rewritings (resp., translations) of q′ with respect to
T (resp., M) are equivalent. Consider now a perfect rewriting qT of q with respect to
T , and then a translation qT ,M of qT with respect toM. It is possible to show that such
a qT ,M satisfies the condition stated above for qfo .

Many different algorithms have been proposed for computing perfect rewritings
of UCQs with respect to DL-LiteR TBoxes, see, e.g., [6,11]. As for the translation,
[17] proposes an algorithm that is based on non-recursive Datalog [1], extended with
function symbols in the head of rules, with the additional restriction that such rules
never produce nested terms. We consider Datalog queries of the form (G,Π), where G
is the answer atom, and Π is a set of Datalog rules following the restriction above. We
abbreviate a Datalog query of the form (q(x), {q(x)← B1, . . . , Bn}), corresponding to
a CQ (possibly with function symbols), as q(x)← B1, . . . , Bn, and we also call it q.

Definition 1 (Unfolding of a UCQ [17]). Let q(x) ← L1(v1), . . . , Ln(vn) be a CQ.
Then, the unfolding unf (q,M) of q w.r.t. M is the Datalog query (qunf (x), Π), where
Π is a (up to variable renaming) minimal set of rules having the following property:

If ((m1, . . . ,mn), σ) is a pair such that {m1, . . . ,mn} ⊆ M, and
• mi = Li(fi(xi))  Vi(zi), for each 1 ≤ i ≤ n, and
• σ is a most general unifier for the set of pairs {(Li(vi), Li(fi(xi))) | 1 ≤ i ≤ n},

then the query qunf (σ(x))← V1(σ(z1)), . . . , Vn(σ(zn)) belongs to Π.
The unfolding of a UCQ q is the union of the unfoldings of each CQ in q.

It has been proved in [17] that, for a UCQ q, unf (q,M) is anM-translation.

3 Cover-based Translation in OBDA

We first introduce some terminology from [3], that we use in our technical development.
Let q be a query consisting of atoms F = {L1, . . . , Ln}. A cover for q is a collection
C = {f1, . . . , fm} of non-empty subsets of F , called fragments, such that (i)

⋃
fi∈C fi =

F and (ii) no fragment is included into another one. Given a cover C for a query q(x),
the fragment query q|f (xf ), for f ∈ C, is the query whose body consists of the atoms in
f and whose answer variables xf are given by the answer variables x of q that appear in
the atoms of f , union the existential variables in f that are shared with another fragment
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f ′ ∈ C, with f ′ 6= f . Consider the query qC(x) ←
∧
f∈C q

ucq
|f

(xf ), where qucq
|f

(xf ), for
each f ∈ C, is a CQ-to-UCQ perfect rewriting of the query q|f w.r.t. T . Then qC is a
cover-based JUCQ perfect rewriting of q w.r.t. T and C, if it is a perfect rewriting of q
w.r.t. T .

Authors in [3] have shown that, in DL-LiteR, not every cover leads to a cover-based
perfect rewriting. Thus, they introduced the notion of safe covers, which are covers that
guarantee the existence of a cover-based perfect rewriting.

For the remaining part of the section, we fix a query q(x) and a (safe) cover C for
it, as well as its cover-based JUCQ perfect rewriting qC(x) ←

∧
f∈C q

ucq
|f w.r.t T and

C. We introduce two different characterizations of unfoldings of qC , which produce
M-translations of q. The first characterization relies on the intuition of joining the un-
foldings of each fragment query in qC .

Definition 2 (Unfolding of a JUCQ 1). For each f ∈ C, let Auxf be an auxiliary
predicate for qucq

|f
(xf ), and let Uf be a view symbol for the unfolding unf (qucq

|f
(xf ),M),

for each f ∈ C. Consider the set of mappingsMaux = {Aux f (xf )  Uf (xf ) | f ∈ C}
associating the auxiliary predicates to the auxiliary view names. Then, we define the un-
folding unf (qC ,M) of qC with respect toM as unf (qauxC (x)←

∧
f∈C Aux f (xf ),Maux ).

Theorem 1 (Translation 1). The query unf (qC ,M) is anM-translation for qC .

The above unfolding characterization for JUCQs corresponds to a translation con-
taining SQL joins over URIs resulting from the application of function symbols to
database values, rather than over (indexed) database values themselves (see [15]). In
general, such joins cannot be evaluated efficiently by RDBMSs [19]. We introduce a
second, less trivial, unfolding characterization that guarantees that joins are performed
only over database values. For this we first need to introduce a number of auxiliary
notions and results.

Definition 3. Let (L, f) ∈ sign(M) be a signature in M. Then, the restric-
tion M|(L,f) of M w.r.t. the signature (L, f) is the set of mappings M|(L,f) =

{m ∈M | m = L(f(v))  V (v)}.

Definition 4 (Wrap). Let M|(L,f) = {L(f(vi))  Vi(vi) | 1 ≤ i ≤ n} be the re-
striction of M w.r.t. the signature (L, f), and f(v) be a tuple of terms over
fresh variables v. Then, the wrap of M|(L,f) is the (singleton) set of mappings
wrap(M|(L,f)) = {L(f(v))  W (v)} where W is a fresh view name for the Datalog
query (W (v), {W (vi)← Vi(vi) | 1 ≤ i ≤ n}).

The wrap ofM is the set wrap(M) =
⋃

(L,f)∈sign(M) wrap(M|(L,f)) of mappings.

The wrap operation groups the mappings for a signature into a single mapping. We
now introduce an operation that splits a mapping according to the function symbols
adopted on its source part.

Definition 5 (Split). Let m = L(x)  U(x) be a mapping where U is the name
for the query (U(x), {U(fi(xi))← Vi(xi) | 1 ≤ i ≤ n}). Then, the split of m is the set
split(m) = {L(fi(xi))  Vi(xi) | 1 ≤ i ≤ n} of mappings. We denote by split(M) the
split of the setM of mappings.
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Definition 6 (Unfolding of a JUCQ 2). Let qauxC be a query and Maux a set of map-
pings as in Definition 2. Then, the optimized unfolding unfopt(qC(x),M) of qC w.r.t.M
is defined as unf (qauxC (x),wrap(split(Maux ))).

Theorem 2 (Translation 2). The query unfopt(qC ,M) is anM-translation for qC .

Observe that the optimized unfolding of a JUCQ is a union of JUCQs (UJUCQ).
Moreover, where each JUCQ produces answers built from a single tuple of function
symbols, if all the attributes are kept in the answer. The next example, aimed at clarify-
ing the notions introduced so far, illustrates these.

Example 1. Let q(x, y, z)← P1(x, y), C(x), P2(x, z), and consider a cover {f1, f2} gen-
erating fragment queries q|f1 = q(x, y) ← P1(x, y), C(x) and q|f2 = q(x, z) ← P2(x, z).
Consider the set of mappings

M =


P1(f(a), g(b))  V1(a, b) P1(f(a), g(b))  V2(a, b)

P1(h(a), i(b))  V3(a, b) C(f(a))  V4(a)
P2(f(a), k(b))  V5(a, b) P2(f(a), h(b))  V6(a, b)

Translation I. According to Definition 2, the JUCQ q(x, y, z)← q|f1(x, y), q|f2(x, z) can
be rewritten as the auxiliary query qaux (x, y, z) = Aux1(x, y),Aux2(x, z) over mappings

Maux =
{
Aux1(x, y)  U1(x, y) Aux2(x, z)  U2(x, z)

}
where U1 is a view name for unf (q|f1(x, y),M) = (U1(x, y), Π1), and U2 is a view name
for unf (q|f2(x, z),M) = (U2(x, z), Π2), such that

Π1 =

{
U1(f(a), g(b)) ← V1(a, b), V4(a)

}
U1(f(a), g(b)) ← V2(a, b), V4(a)

Π2 =

{
U2(f(a), k(b)) ← V5(a, b)

}
U2(f(a), h(b)) ← V6(a, b)

Translation II. By Definition 5, we compute the split ofMaux :

split(Maux ) =

{
Aux1(f(a), g(b))  V1(a, b), V4(a) Aux2(f(a), k(b))  V5(a, b)

}
Aux1(f(a), g(b))  V2(a, b), V4(a) Aux2(f(a), h(b))  V6(a, b)

By Definition 4, we compute the wrap of split(Maux ):

wrap(split(Maux )) =

{
Aux1(f(a), g(b))  W3(a, b) Aux2(f(a), k(b))  W4(a, b)

}
Aux2(f(a), h(b))  W5(a, b)

where W3(a, b), W4(a, b), W5(a, b) are Datalog queries whose programs are respectively

Π3 =

{
W3(a, b) ← V1(a, b), V4(a)

}
W3(a, b) ← V2(a, b), V4(a)

Π4 =
{
W4(a, b) ← V5(a, b)

}
Π5 =

{
W5(a, b) ← V6(a, b)

}
Finally, by Definition 6 we compute the optimized unfolding of qC w.r.t.M:

unfopt(qC(x, y, z),M) = unf (qaux (x, y, z),wrap(split(Maux ))) = (qauxunf (x, y, z), Πunf )

where
Πunf =

{
qauxunf (f(a), g(b), k(b

′))←W3(a, b),W4(a, b
′)
}

qauxunf (f(a), g(b), h(b
′))←W3(a, b),W5(a, b

′)

Observe that unfopt(qC(x, y, z),M) is a UJUCQ. Moreover, each of the two JUCQs in
qauxunf contributes with answers built out of a specific tuple of function symbols.
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4 Unfolding Cardinality Estimation

For convenience, in this section, we use relational algebra notation [1] for CQs. To deal
with multiple occurrences of the same predicate in a CQ, the corresponding algebra
expression would contain renaming operators. However, in our cardinality estimations
we need to understand when two attributes actually refer to the same relation, and this
information is lost in the presence of renaming. Instead of introducing renaming, we
first explicitly replace multiple occurrences of the same predicate name in the CQ by
aliases (under the assumption that aliases for the same predicate name are interpreted
as the same relation). Specifically, we use alias V[i] to represent the i-th occurrence of
predicate name V in the CQ. Then, when translating the aliased CQ to algebra, we use
fully qualified attribute names (i.e., each attribute name is prefixed with the (aliased)
predicate name). So, to reconstruct the relation name V to which an attribute V[i].x

refers, it suffices to remove the occurrence information [i] from the prefix V[i]. When the
actual occurrence of V is not relevant, we use V[·] to denote the alias.

Moreover, in the following, we consider only the restricted form of CQs, which we
call basic CQs, whose algebra expression is of the form

E = V 0
[·] onθ1 V

1
[·] onθ2 · · · onθn V

n
[·] ,

where, the V is denote predicate names, and for each i ∈ {1, . . . , n}, the join condition
θi is of the form V j[·].x = V i[·].y, for some j < i. Arbitrary CQs, allowing for projections
and arbitrary joins, are considered in the extended version of this work [15].

Given a basic CQE as above, we denote byE(m), for 1 ≤ m ≤ n, the sub-expression
of E up to the m-th join operator, namely E(m) = V 0

[·] onθ1 V
1
[·] onθ2 · · · onθm V m[·] .

In the following, in addition to an OBDA specification, we also fix a database in-
stance D for Σ. We use V and W to denote relation names (with an associated relation
schema) in the virtual schema MΣ , whose associated relations consist of (multi)sets
of labeled tuples (see the named perspective in [1]). Given a relation S, we denote by
|S| the number of (distinct) tuples in S, by πL(S) the projection of S over attributes
L (under set-semantics), and by πL1(S1)eπL2(S2) intersection of relations disregard-
ing attribute names, i.e., πL1(S1)∩ ρL2 7→L1(πL2(S2)). We also use the classical notation
P (α) to denote the probability that an event α happens.

Background on Cardinality Estimation. We start by recalling some assumptions that
are commonly made by models of cardinality estimation proposed in the database lit-
erature (e.g., see [20]): (i) For each relation column C, values are uniformly distributed
across C; intuitively, for a column C of integers, P (C < v) = (v−min(C))/(max(C)−
min(C)), for each value v ∈ C. (ii) There is a uniform distribution across distinct values,
i.e., P (C = v1) = P (C = v2), for all values v1, v2 ∈ C. (iii) The distributions in different
colums are independent, i.e., P (C1 = v1|C2 = v2) = P (C1 = v1), for all values v1 ∈ C1

and v2 ∈ C2. (iv) Columns in a join condition match “as much as possible”, i.e., given a
join V onx=y W , it is assumed that |πx(V

D)eπy(W
D)| = min(|πx(V )|, |πy(W )|).

Given the assumptions, the cardinality of a join V onx=y W is estimated [21] as:

kD(V onx=y W ) · |V D|/distD(V,x) · |WD|/distD(W,y) (1)

where kD is an estimation of the number of distinct values satisfying the join condition
(i.e., kD estimates |πx(V

D)eπy(W
D)|, and distD(V,x) (resp., distD(W,y)) corresponds
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to the estimation of |πx(V
D)| (resp., |πy(W

D)|), both calculated according to the afore-
mentioned assumptions. Note that the fractions such as |VD|

distD(V,x)
estimate the number

of tuples associated to each value that satisfies the join condition.
Of the assumptions (i)–(iv) above, we maintain only (ii) and (iii) in our cardinality

estimator, while we drop (i) and (iv) due to the additional information given by the struc-
ture of the mappings. In the following, we will show how even under these conditions
we can use Formula (1), to estimate the cardinality of conjunctive queries.

Basic CQ Cardinality Estimation. We first generalize Formula (1) to basic CQs.

Cardinality Estimator. Given a basic CQ E′, fD(E′) estimates the number |E′D| of
distinct results in the evaluation of E′ over D. We define it as

fD(E onV[p].x=W[q].y W[q]) =



⌈
kD(V[p] onV[p].x=W[q].y W[q]) · |V D| · |WD|

distD(V, V[p].x) · distD(W,W[q].y)

⌉
, if E = V⌈

kD(E onV[p].x=W[q].y W[q]) · fD(E) · |WD|
distD(E, V[p].x) · distD(W,V[p].y)

⌉
, otherwise.

(2)
Our cardinality estimator exploits assumptions (ii) and (iii) above, and relies on our
definitions of the facing values estimator kD and of the distinct values estimator distD,
which are based on additional statistics collected with the help of the mappings, instead
of being based on assumptions (i) and (iv), as in Formula (1).

Facing Values Estimator. Given a basic CQ E′ = E onV[p].x=W[q].y W[q], the estimation
kD(E

′) of the cardinality |πV.x(ED)eπW.y(WD)| is defined as

kD(E onV[p].x=W[q].y W[q]) =


|πx(V

D)eπy(W
D)|, if E = V⌈

|πx(V
D)eπy(W

D)| · distD(E, V[p].x)

distD(V, V[p].x)

⌉
, otherwise,

(3)
where |πx(V

D)eπy(W
D)| is assumed to be a statistic available after having analyzed

the mappings together with the data instance. The fraction distD(E,V[p].x)

distD(V,V[p].x)
is a scaling

factor relying on assumption (ii).

Distinct Values Estimator. Let Q be a set of qualified attributes, and E be basic CQ. We
define the set ea(E,Q) of equivalent attributes of Q in E as

⋃
i>0 Ci, where (i) C1 :=

{Q} (ii) Cn+1 := Cn ∪ {Q′ | ∃Q′′ ∈ Cn s.t. Q′ = Q′′ or Q′′ = Q′ is a join condition in E},
n ≥ 1. Given a basic CQ E and a set V[p].x of qualified attributes, the expression
se(E, V[p].x) denotes the longest sub-expression E(n) in E, for some n > 1, such that
E(n) = E(n−1) onW[q].y=U[r].z U[r], for some relation name W , tuples of attributes y and
z such that U[r].z ∈ ea(E, V[p].x), if E(n) exists, and ⊥ otherwise. For E and V[p].x, the
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a b ...

1 4 ...

2 8 ...

3 12 ...

4 16 ...

5 20 ...

T1
c d ...

1 2 ...

3 4 ...

5 6 ...

7 8 ...

9 10 ...

11 2 ...

13 4 ...

15 6 ...

17 8 ...

19 10 ...

T2

e f ...

1 1 ...

2 8 ...

3 16 ...

4 24 ...

5 32 ...

6 40 ...

7 48 ...

8 56 ...

9 64 ...

10 72 ...

T3

Fig. 1: Data instance D.

estimation distD(E, V[p].x) of the cardinality |πV[p].x(E
D)| is defined as

distD(E, V[p].x) =



|πx(V
D)|, if E = V

min

{⌈
kD(E

′) · fD(E)

fD(E′)

⌉
, kD(E

′)

}
, if se(E, V[p].x) = E′ 6= ⊥

min

{⌈
|πx(V

D)| · fD(E)

|V D|

⌉
, |πx(V

D)|
}
, otherwise.

(4)
where |πx(V

D)| is assumed to be a statistic available after having analyzed the mappings
together with the data instance. Observe that the fractions fD(E)

fD(E′) and fD(E)

|VD| are again
scaling factors relying on assumption (ii). Also, distD(E, V.x) must not increase when
the number of joins in E increases, which explains the use of min for the case where
the number of distinct results in E increases with the number of joins.

Example 2. Consider the data instance D from Figure 1. Relevant statistics are:
– |TD1 | = 5, |TD2 | = |TD3 | = 10

– |πa(T
D
1 )| = |πd(T

D
2 )| = 5, |πc(T

D
2 )| = |πf(T

D
3 )| = |πe(T

D
3 )| = 10,

– |πa(T
D
1 )eπc(T

D
2 )| = 3, |πd(T

D
2 )eπe(T

D
3 )| = 5, |πa(T

D
1 )eπf(T

D
3 )| = 1.

We calculate fD(E) for the basic CQ E = T1 onT1.a=T2.c T2 onT2.d=T3.e T3 onT1.a=T ′3.f
T ′3,

where T ′3 is an alias (written in this way for notational convenience) for the table T3. To
do so, we first need to calculate the estimations fD(E(1)) and fD(E(2)).

fD(E
(1)) = fD(T1 onT1.a=T2.c T2) =

⌈
kD(T1 onT1.a=T2.c T2) · |TD1 | · |TD2 |

distD(T1, a) · distD(T2, c)

⌉
=

⌈
|πa(T

D
1 )eπc(T

D
2 )| · |TD1 | · |TD2 |

|πa(TD1 )| · |πc(TD2 )|

⌉
= d(3 · 5 · 10)/(5 · 10)e = 3

fD(E
(2)) = fD(E

(1) onT2.d=T3.e T3) =

⌈
kD(E

(1) onT2.d=T3.e T3) · fD(E(1)) · |TD3 |
distD(E(1), T2.d) · distD(T3, e)

⌉
(5)

By Formula (4), distD(E(1), T2.d) in Formula (5) can be calculated as

distD(E
(1), T2.d) = min

{⌈
|πd(T

D
2 )|

|TD2 |
· fD(E(1))

⌉
, |πd(T

D
2 )|
}

= min

{⌈
5

10
· 3
⌉
, 5

}
=

⌈
3

2

⌉
= 2
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By Formula (3), kD(E(1) onT2.d=T3.e T3) in Formula (5) can be calculated as

kD(E
(1) onT2.d=T3.e T3) =

⌈
kD(T2 onT2.d=T3.e T3)

distD(T2, d)
· distD(E(1), T2.d)

⌉
=

⌈
|πd(T

D
2 )eπe(T

D
3 )|

|πd(TD2 )|
· distD(E(1), T2.d)

⌉
=

⌈
5

5
· 2
⌉

= 2

By plugging the values for kD and distD in Formula (5), we obtain

fD(E
(2)) = d(2 · 3 · 10)/(2 · 10)e = 3

We are now ready to calculate the cardinality of E, which is given by the formula

fD(E) = fD(E
(2) onT1.a=T ′3.f

T ′3) =

⌈
kD(E

(2) onT1.a=T ′3.f
T ′3) · fD(E(2)) · |TD3 |

distD(E(2), T1.a) · distD(T3, f)

⌉
(6)

By Formula (4), distD(E(2), T1.a) in Formula (6) can be computed as

distD(E
(2), T1.a) = min

{⌈
kD(E

(1))

fD(E(1))
· fD(E(2))

⌉
, kD(E

(1))

}
= min

{⌈
3

3
· 3
⌉
, 3

}
= 3

Then, by Formula (3), kD(E(2) onT1.a=T ′3.f
T ′3) in Formula (6) can be computed as

kD(E
(2) onT1.a=T ′3.f

T ′3) =

⌈
kD(T1 onT1.a=T ′3.f

T ′3)

distD(T1, a)
· distD(E(2), T1.a)

⌉
=

⌈
3

5

⌉
= 1

By plugging the values for kD and distD in (6), we finally obtain

fD(E) = d(1 · 3 · 10)/(3 · 10)e = 1

Observe that, in this example, our estimation is exact, that is, fD(E) = |ED|.

Collecting the Necessary Statistics. The estimators introduced above assume a num-
ber of statistics to be available. We now show how to compute such statistics on
a data instance by analyzing the mappings. Consider a set of mappings M =

{Li(fi(vi))  Vi(vi) | 1 ≤ i ≤ n} and a data instance D. We store the statistics:

S1 |V Di |, for each i ∈ {1, . . . , n};
S2 |πx(V

D
i )|, if f(x) is a term in fi(vi), for some function symbol f and i ∈ {1, . . . , n};

S3 |πx(V
D
i )eπy(V

D
j )|, if f(x) is a term in fi(vi), and f(y) is a term in fj(vj), for some

function symbol f and i, j ∈ {1, . . . , n}, i 6= j.

Statistics S1 and S2 are required by all three estimators that we have introduced, and
can be measured directly by evaluating source queries on D. Statistics S3 can be col-
lected by first iterating over the function symbols in the mappings, and then calculating
the cardinalities for joins over pairs of source queries whose corresponding mapping
targets have a function symbol in common. It is easy to check that Statistics S1–S3

suffice for our estimation, since all joins in a CQ are between source queries, and more-
over, every translation calculated according to Definition 1 contains only joins between
pairs of source queries considered by Statistics S3.
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Unfolding Cardinality Estimator. We now show how to estimate the cardinality of an
unfolding by using the formulae (2), (3), and (4) introduced for cardinality estimation.
The next theorem shows that such estimation can be calculated by summing-up the
estimated cardinalities for each CQ in the unfolding of the input query, provided that
(i) the unfolding is being calculated over wrap mappings, and (ii) the query to unfold is
a CQ.

Theorem 3. Consider a CQ q(x)← L1(v1), . . . , Ln(vn) such that x =
⋃n
i=1 vi. Then

|unf (q(x),M)D| =
∑

qu∈unf (q,wrap(M))

|qu(x)D|

The previous theorem states that the cardinality of the unfolding of a query over a
wrap mapping corresponds to the sum of the cardinalities of each CQ in the unfold-
ing, under the assumption that all the attributes are kept in the answer. Intuitively, the
proof [15] relies on the fact that, when wrap mappings are used, each CQ in the un-
folding returns answer variables built using a specific combination of function names.
Hence, to calculate the cardinality of a CQ q, it suffices to collect statistics as described
in the previous paragraph, but over wrap(M) rather thanM, and sum up the estimations
for each CQ in unf (q,wrap(M)).

The method above might overestimate the actual cardinality if the input CQ con-
tains non-answer variables. In [15] we show how to address this limitation by storing,
for each property in the mappings, the probability of having duplicate answers if the
projection operation is applied to one of the (two) arguments of that property. Also,
the method above assumes a CQ as input to the unfolding, whereas a rewriting is in
general a UCQ. This is usually not a critical aspect, especially in practical applications
of OBDA. By using saturated (or T-)mappings [18] MT in place of M, in fact, the
rewriting of an input CQ q almost always [12] coincides with q itself3. Hence, in most
cases we can directly use in Theorem 3 the input query q, if we use wrap(MT ) instead
of wrap(M). A fully detailed example on how this is done is provided in [15].

5 Unfolding Cost Model

We are now ready to estimate the actual costs of evaluating UJUCQ and UCQ un-
foldings, by exploiting the cardinality estimations from the previous section. Our cost
model is based on traditional textbook-formulae for query cost estimation [20]. We here
provide the high-level view of the cost model, and leave the details in [15].

Cost for the Unfolding of a UCQ. Recall from Section 3 that the unfolding of a UCQ
produces a UCQ translation qucq =

∨
i q

cq
i . We estimate the cost of evaluating qucq as

c(qucq) =
∑
i c(q

cq
i ) + cu(q

ucq)

where
– c(qcqi ) is the cost of evaluating each qcqi in qucq ;

3 Always, if the CQ is interpreted as a SPARQL query and evaluated according to the OWL 2 QL
entailment regime, or if the CQ does not contain existentially quantified variables.
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(b) PostgreSQL cost model vs. evaluation
queries linear regression of our cost estimation linear regression of PostgreSQL cost estimation

succ. time out b0 b1 b0 b1

UCQ 68 16 1.40e+01 6.17e-05 6.16e+01 3.61e+05
JUCQ 83 1 -3.76e+01 6.33e-05 2.56e+01 3.25e-07

(c) Results of linear regressions (evaluation = b0 + b1 × estimation)

Fig. 2: Cost estimations vs evaluation running times

– cu(q
ucq) is the cost of removing duplicate results.

Cost for the Unfolding of a JUCQ. Recall from Section 3 that the optimized unfolding
of a JUCQ produces a UJUCQ. We estimate the cost of a single JUCQ qjucq =

∧
i q

ucq
i

in the unfolding as

c(qjucq) =
∑
i c(q

ucq
i ) +

∑
i 6=k cmat(q

ucq
i ) + cmj (q

jucq) + cu(q
jucq)

where
– c(qucqi ) is the cost of evaluating each UCQ component qucqi ;
–
∑
i 6=k cmat(q

ucq
i ) is the cost of materializing the intermediate results from qucqi ,

where the k-th UCQ is assumed to be pipelined [20] and not materialized;
– cmj (q

jucq) is the cost of a merge join over the materialized intermediate results;
– cu(q

jucq) is the cost of removing duplicate results.
The cost for a UJUCQ qujucq =

∨
i q
jucq
i , if all the attributes are kept in the answer, is

simply the sum
∑
i c(q

jucq
i ), since the results of all JUCQs are disjoint (c.f., Section 3).

Otherwise, we need to consider the cost of eliminating duplicate results.

6 Experimental Results

In this section, we provide an empirical evaluation that compares unfoldings for UCQs
and (optimized) unfoldings for JUCQs, as well as the estimated costs and the actual
time needed to evaluate the unfoldings. We ran the experiments on an HP Proliant server
with 2 Intel Xeon X5690 Processors (each with 12 logical cores at 3.47GHz), 106GB of
RAM and five 1TB 15K RPM HDs. As RDBMS we have used PostgreSQL 9.6. In the
extended version [15] of this work we provide the material to replicate our experiments.

Wisconsin Experiment. This experiment is based on the Wisconsin Benchmark [8],
which allows for in-detail analyses w.r.t. parameters such as join selectivities. We cre-
ated several copies of the Wisconsin table, and populated each of them with 1M rows.
Our test is on 84 queries, instantiations of the following template:
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Fig. 3: Performance gain of JUCQ compared with UCQ

SELECT DISTINCT * WHERE {?x :MmRrProp1 ?y1; :JjMmRrProp2 ?y2; :JjMmRrProp3 ?y3}

where j ∈ {5, 10, 15, 20} denotes the selectivity of the join between the first property
and each of the remaining two, expressed as a percentage of the number of retrieved
rows for each mapping defining the property (each mapping retrieves 200k tuples); m ∈
{1, . . . , 6} denotes the number of mappings defining the property (all such mappings
have the same signature), and r ∈ {0, . . . ,m − 1} denotes the number of redundant
mappings, that is, the number of mappings assertions retrieving the same results of
another mapping definining the property, minus one.

For each query, we have tested a correspondent cover query of two fragments f1, f2,
where each fragment is an instantiation of the following templates:

f1: SELECT DISTINCT ?x ?y1 ?y2 WHERE { ?x :MmRrProp1 ?y1; :JjMmRrProp2 ?y2. }
f2: SELECT DISTINCT ?x ?y3 WHERE { ?x a :MmRrProp1; ?x :JjMmRrProp3 ?y3. }

We have implemented our cost model in a Python script. For each SPARQL query,
we compute the estimation of the costs of both unfoldings for UCQs and JUCQs, and
evaluate these unfoldings over the PostgreSQL database with a timeout of 20 minutes.

In Figure 2, we present the cost estimation and the actual running time for each
query. We have the following observations:

– In this experiment, for the considered cover, JUCQs are generally faster than UCQs.
In fact, out of the 84 SPARQL queries, only one JUCQ was timed out, while 16
UCQs were timed out. The mean running time of successful UCQs and JUCQs are
respectively 160 seconds and 350 seconds.

– In Figure 2a, where the fitted lines are obtained by applying linear regression over
successful UCQ and JUCQ evaluations, we observe a strong linear correlation be-
tween our estimated costs and real running times. Moreover, the coefficients (b1
and b0) for UCQs and JUCQs are rather close. This empirically shows that our cost
model can estimate the real running time well.

– Figure 2b shows that the PostgreSQL cost model assigns the same estimation to
many queries having different running times. Moreover, the linear regressions for
UCQs and JUCQs are rather different, which suggests that PostgreSQL is not able
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Fig. 4: UCQs: (PostgreSQL estimated cardinality) / (real cardinality)
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Fig. 5: JUCQs: (PostgreSQL estimated cardinality) / (real cardinality)

to recognize when two translations are semantically equivalent. Hence, PostgreSQL
is not able to estimate the cost of these queries properly.
In Figure 3, we visualize the performance gain of JUCQs compared with UCQs. The

four subgraphs correspond to four different join selectivities. Each subgraph is a matrix
in which each cell shows the value of the performance gain g = 1− jucq time/ucq time.
When g > 0, we apply the red color; otherwise framed-blue. These graphs clearly show
that when there is a large number of mappings and there is high redundancy, we have
better performance gains. When the redundancy is low (0 or 1), and the number of
mapping axioms is large, the join selectivity plays an important role in the performance
gain, as discussed in [3]; in other cases, the impacts are non-significant.

Figures 4 and 5 report the cardinalities estimated by PostgreSQL divided by the
actual sizes of the query answers for all UCQ and JUCQ queries. For UCQs, it shows
that PostgreSQL normally underestimates the cardinalities, but it overestimates them
when the redundancies are high. As for JUCQS, PostgreSQL always overestimates the
cardinalities, ranging from 40 to 200K times. These numbers partially explain why
PostgreSQL estimate the costs of both UCQs and JUCQs so badly in Figure 2b.

We obtained similar conclusions for a query with four atoms, and a cover of three
fragments. For more details, refer to the extended version [15] of this work.
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Table 1: Evaluation over the NPD benchmark
SPARQL Query Unfolding for UCQs Unfolding for JUCQs

name # triple patterns time (s) # CQs time (s) # Frags # CQs

q6 7 2.18 48 1.20 2 14
q11 8 3.39 24 0.40 2 12
q12 10 6.67 48 0.47 2 14
q31 10 54.27 3840 1.58 2 327

NPD Experiment. The goal of this experiment is to verify that cost-based techniques
can improve the performance of query answering over real-world queries and instances.
This test is carried on the original real-world instance (as opposed to the scaled data
instances) of the NPD benchmark [14] for OBDA systems. We pick the three most
challenging UCQ queries (namely q6, q11, q12, and q31) from the query catalog, where
q31 is a combination of queries q6 and q9, created during this work, which retrieves
information regarding wellbores (from q6) and their related facilities (from q9).

In Table 1, we show the evaluation results over the NPD benchmark for UCQs and
JUCQs. The unfoldings for JUCQs are constructed using cover queries of 2 fragments,
each guided by our cost model. We observe that the sizes of the unfoldings for JUCQs,
measured in number of CQs, are sensibly smaller than the size of the unfoldings for
UCQs. Finally, we observe that the unfoldings for the JUCQ version of the considered
queries improve the running times up to a factor of 34.

7 Conclusion and Future Work

In this paper, we have studied the problem of finding efficient alternative translations
of a user query in OBDA. Specifically, we introduced a translation for JUCQ queries
that preserves the JUCQ structure while maintaining the possibility of performing joins
over database values, rather than URIs constructed by applying mappings definitions.
We devised a cost model based on a novel cardinality estimation, for estimating the
cost of evaluating a translation for a UCQ or JUCQ over the database. We compared
different translations on both a synthetic and fully customizable scenario based on the
Wisconsin Benchmark and on a real-world scenario from the NPD Benchmark. In these
experiments we have observed that (i) our approach based on JUCQ queries can produce
translations that are orders of magnitude more efficient than traditional translations into
UCQs, and that (ii) the cost model we devised is faithful to the actual query evaluation
cost, and hence is well suited to select the best translation.

As future work, we plan to implement our techniques in the state-of-the-art OBDA
system Ontop and to integrate them with existing optimization strategies. This will al-
low us to test our approach in more and diversified settings. We also plan to explore
alternatives beyond JUCQs. Finally, we plan to work on the problem of relaxing the
uniformity assumption made in our cost estimator, by integrating our model with exist-
ing techniques based on histograms.
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