
A Decidable Very Expressive
Description Logic for Databases

Alessandro Artale, Enrico Franconi, Rafael Peñaloza, Francesco Sportelli

KRDB Research Centre, Free University of Bozen-Bolzano, Italy
{artale,franconi,penaloza,sportelli}@inf.unibz.it

Abstract. We introduce DLR`, an extension of the n-ary proposition-
ally closed description logic DLR to deal with attribute-labelled tuples
(generalising the positional notation), projections of relations, and global
and local objectification of relations, able to express inclusion, functional,
key, and external uniqueness dependencies. The logic is equipped with
both TBox and ABox axioms. We show how a simple syntactic restric-
tion on the appearance of projections sharing common attributes in a
DLR` knowledge base makes reasoning in the language decidable with
the same computational complexity as DLR. The obtained DLR˘ n-
ary description logic is able to encode more thoroughly conceptual data
models such as EER, UML, and ORM.

1 Introduction

We introduce the description logic (DL) DLR` extending the n-ary DL DLR
[6], in order to capture database oriented constraints. While DLR is a rather
expressive logic, tailored for conceptual modelling and ontology design, gener-
alising many aspects of classical description logics and OWL, it lacks a number
of expressive means relevant for database applications that can be added with-
out increasing the complexity of reasoning—when used in a carefully controlled
way. The added expressivity is motivated by the increasing use of description
logics as an abstract conceptual layer (an ontology) over relational databases.
For example, the DLR family of description logics is used to formalise and per-
form reasoning in the ORM conceptual modelling language for database design
(adopted by Microsoft in Visual Studio) [8, 15].

We remind that a DLR knowledge base, as defined in [6], can express axioms
with (i) propositional combinations of concepts and (compatible) n-ary relations
– as opposed to just binary roles as in classical description logics and OWL, (ii)
concepts as unary projections of n-ary relations – generalising the existential
operator over binary roles in classical description logics and OWL, and (iii) re-
lations with a selected typed component.
As an example of DLR, in a knowledge base where Pilot and RacingCar are
concepts and DrivesCar, DrivesMotorbike, DrivesVehicle are binary rela-
tions, the following statements:

PilotĎ Dr1sσ2:RacingCarDrivesCar

DrivesCar\ DrivesMotorbikeĎ DrivesVehicle

assert that a pilot drives a racing car and that driving a car or a motorbike
implies driving a vehicle.

The language we propose here, DLR`, extends DLR in the following ways.

– While DLR instances of n-ary relations are n-tuples of objects—whose com-
ponents are identified by their position in the tuple—instances of relations
in DLR` are attribute-labelled tuples of objects, i.e., tuples where each com-
ponent is identified by an attribute and not by its position in the tuple (see,
e.g., [11]). For example, the relation Employee may have the signature:

Employeepfirstname, lastname, dept, deptAddrq,

and an instance of Employee could be the tuple:

xfirstname : John, lastname : Doe, dept : Purchase, deptAddr : Londony.

– Attributes can be renamed, for example to recover the positional attributes:

firstname, lastname, dept, deptAddr Õ 1, 2, 3, 4.

– Relation projections allow to form new relations by projecting a given re-
lation on some of its attributes. For example, if Person is a relation with
signature Personpname, surnameq, it could be related to Employee as follows::

πrfirstname, lastnamesEmployeeĎ Person,

firstname, lastname Õ name, surname.

– The objectification of a relation (also known as reification) is a concept whose
instances are unique object identifiers of the tuples instantiating the relation.
Those identifiers could be unique only within an objectified relation (local ob-
jectification), or they could be uniquely identifying tuples independently on
the relation they are instance of (global objectification). For example, the con-
cept EmployeeC could be the global objectification of the relation Employee,
assuming that there is a global 1-to-1 correspondence between pairs of values
of the attributes firstname, lastname and EmployeeC instances:

EmployeeC”
å

Drfirstname, lastnamesEmployee.

Consider the relations with the following signatures:

DrivesCarpname, surname, carq, OwnsCarpname, surname, carq,

and assume that anybody driving a car also owns it: DrivesCarĎ OwnsCar.
The locally objectified events of driving and owning, defined as

CarDrivingEvent”
ä

DrivesCar, CarOwningEvent”
ä

OwnsCar,

do not imply that a car driving event by a person is the owning event by
the same person and the same car: CarDrivingEventĘ CarOwningEvent.
Indeed, they are even disjoint: CarDrivingEvent[CarOwningEventĎK.

C Ñ CN | C | C1 [C2 | D
ěq
rUisR |

Å

R |
Ä

RN

R Ñ RN | R1zR2 | R1 [R2 | R1 \R2 | σUi:CR | πĳqrU1, . . . , UksR

ϕ Ñ C1 ĎC2 | R1 ĎR2 |CNpoq |RNpU1:o1, . . . , Un:onq | o1“ o2 | o1‰ o2

ϑ Ñ U1 ÕU2

Fig. 1. The syntax of DLR`.

It turns out that DLR` is an expressive description logic able to assert
relevant constraints typical of relational databases. In Section 3 we will consider
inclusion dependencies, functional and key dependencies, external uniqueness
and identification axioms. For example, DLR` can express the fact that the
attributes firstname, lastname play the role of a multi-attribute key for the
relation Employee:

πrfirstname, lastnamesEmployeeĎπď1rfirstname, lastnamesEmployee,

and that the attribute deptAddr functionally depends on the attribute dept

within the relation Employee:

DrdeptsEmployeeĎ Dď1rdepts pπrdept, deptAddrsEmployeeq .

While DLR` turns out to be undecidable, we show how a simple syntac-
tic condition on the appearance of projections sharing common attributes in a
knowledge base makes the language decidable. The result of this restriction is a
new language called DLR˘. We prove that DLR˘, while preserving most of the
DLR` expressivity, has a reasoning problem whose complexity does not increase
w.r.t. the computational complexity of the basic DLR language.

We also present in Section 6 the implementation of an API for the reasoning
services in DLR˘.

2 The Description Logic DLR`

We start by introducing the syntax of DLR`. A DLR` signature is a tuple
L “ pC,R,O,U , τq where C, R, O and U are finite, mutually disjoint sets of
concept names, relation names, individual names, and attributes, respectively,
and τ is a relation signature function, associating a set of attributes to each
relation name τpRNq“ tU1, . . . , UnuĎU , with ně 2.

The syntax of concepts C, relations R, formulas ϕ, and attribute renaming
axioms ϑ is given in Figure 1, where CN PC, RN PR, U PU , oPO, q is a positive
integer and 2ď k ă aritypRq. The arity of a relation R is the number of the
attributes in its signature; i.e., aritypRq “ |τpRq|, with the relation signature
function τ extended to complex relations as in Figure 2. Note that it is possible
that the same attribute appears in the signature of different relations.

As mentioned in the introduction, the DLR` constructors added to DLR
are the local and global objectification (

Ä

RN and
Å

R, respectively); relation

τpR1zR2q“ τpR1q

τpR1 [R2q“ τpR1q if τpR1q“ τpR2q

τpR1 \R2q“ τpR1q if τpR1q“ τpR2q

τpσUi:CRq“ τpRq if Ui P τpRq

τpπĳqrU1, . . . , UksRq“ tU1, . . . , Uku if tU1, . . . , UkuĂ τpRq

undefined otherwise

Fig. 2. The signature of DLR` relations.

projections with the possibility to count the projected tuples (πĳqrU1, . . . , UksR),
and renaming axioms over attributes (U1 ÕU2). Note that local objectification
(
Ä

R) can be applied to relation names, while global objectification (
Å

RN) can
be applied to arbitrary relation expressions. We use the standard abbreviations:

K“C [C, J“ K, C1 \ C2“ p C1 [C2q, DrUisR“D
ě1rUisR,

DďqrUisR“ pD
ěq`1rUisRq, πrU1, . . . , UksR“π

ě1rU1, . . . , UksR.

A DLR` TBox T is a finite set of concept inclusion axioms of the form
C1 ĎC2 and relation inclusion axioms of the form R1 ĎR2. We use X1”X2 as a
shortcut for the two axioms X1 ĎX2 and X2 ĎX1. A DLR` ABox A is a finite
set of concept instance axioms of the form CNpoq, relation instance axioms of
the form RNpU1:o1, . . . , Un:onq, and same/distinct individual axioms of the form
o1“o2 and o1‰o2, with oi PO. Restricting ABox axioms to concept and relation
names only does not affect the expressivity of DLR` due to the availability
of unrestricted TBox axioms. A DLR` renaming schema < is a finite set of
renaming axioms of the form U1 ÕU2. We use the shortcut U1 . . . UnÕU 11 . . . U

1
n

to group many renaming axioms with the meaning that UiÕU 1i for all i“1, . . . , n.
A DLR` knowledge base (KB) KB “ pT ,A,<q is composed by a TBox T , an
ABox A, and a renaming schema <.

The renaming operator Õ is an equivalence relation over the attributes U ,
pÕ,Uq. The partitioning of U into equivalence classes induced by a renaming
schema is meant to represent the alternative ways to name attributes in the
knowledge base. A unique canonical representative for each equivalence class
is chosen to replace all the attributes in the class throughout the knowledge
base. From now on we assume that a knowledge base is consistently rewritten by
substituting each attribute with its canonical representative. After this rewriting,
the renaming schema does not play any role in the knowledge base. We allow only
arity-preserving renaming schemas, i.e., there is no equivalence class containing
two attributes from the same relation signature.

As shown in the introduction, the renaming schema is useful to reconcile the
named attribute perspective and the positional perspective on relations. It is
also important to enforce union compatibility among relations involved in rela-
tion inclusion axioms, and among relations involved in [- and \-set expressions.
Two relations are union compatible (w.r.t. a renaming schema) if they have the
same signature (up to the attribute renaming induced by the renaming schema).

p CqI “JI
zCI

pC1 [C2q
I
“CI

1 X C
I
2

pD
ěq
rUisRq

I
“ td P∆ |

ˇ

ˇtt PRI
| trUis“ du

ˇ

ˇě qu

p
Å

RqI “ td P∆ | d“ ıptq ^ t PRI
u

p
Ä

RNqI “ td P∆ | d“ `RN ptq ^ t PRN
I
u

pR1zR2q
I
“RI

1 zR
I
2

pR1 [R2q
I
“RI

1 XR
I
2

pR1 \R2q
I
“ tt PRI

1 YR
I
2 | τpR1q“ τpR2qu

pσUi:CRq
I
“ tt PRI

| trUis PC
I
u

pπĳqrU1, . . . , UksRq
I
“ txU1 : d1, . . . , Uk : dky PT∆ptU1, . . . , Ukuq |

1ď
ˇ

ˇtt PRI
| trU1s“ d1, . . . , trUks“ dku

ˇ

ˇĳ qu

Fig. 3. The semantics of DLR` expressions.

Indeed, as it will be clear from the semantics, a relation inclusion axiom involv-
ing non union compatible relations would always be false, and a [- and \-set
expression involving non union compatible relations would always be empty.

The semantics of DLR` uses the notion of labelled tuples over a countable
potentially infinite domain ∆. Given a set of labels X Ď U an X -labelled tuple
over ∆ (or tuple for short) is a total function t : X Ñ∆. For U P X , we write
trU s to refer to the domain element d P∆ labelled by U . Given d1, . . . , dn P∆,
the expression xU1 : d1, . . . , Un : dny stands for the tuple t defined on the set of
labels tU1, . . . , Unu such that trUis“ di, for 1ď 1ďn. The projection of the tuple
t over the attributes U1, . . . , Uk is the function t restricted to be undefined for
the labels not in U1, . . . , Uk, and it is denoted by trU1, . . . , Uks. The relation
signature function τ is extended to labelled tuples to obtain the set of labels on
which a tuple is defined. T∆pX q denotes the set of all X -labelled tuples over ∆,
for X ĎU , and we overload this notation by denoting with T∆pUq the set of all
possible tuples with labels within the whole set of attributes U .

A DLR` interpretation is a tuple I “ p∆, ¨I , ı, Lq consisting of a nonempty
countable potentially infinite domain ∆ specific to I, an interpretation function
¨I , a global objectification function ı, and a family L containing one local objecti-
fication function `RNi for each named relation RNiPR. The global objectification
function is an injective function, ı :T∆pUqÑ∆, associating a unique global iden-
tifier to each tuple. The local objectification functions, `RNi :T∆pUqÑ∆, are as-
sociated to each relation name in the signature, and as the global objectification
function they are injective: they associate an identifier—which is guaranteed to
be unique only within the interpretation of a relation name—to each tuple.

The interpretation function ¨I assigns a domain element to each individual,
oI P∆, a set of domain elements to each concept name, CNI Ď∆, and a set of
τpRNq-labelled tuples over ∆ to each relation name RN , RNIĎT∆pτpRNqq. Note
that the unique name assumption is not enforced. The interpretation function ¨I

is unambiguously extended over concept and relation expressions as specified in

Figure 3. Notice that the construct πĳqrU1, . . . , UksR is interpreted as a classical
projection over a relation, thus including only tuples belonging to the relation.

The interpretation I satisfies the concept inclusion axiom C1ĎC2 if CI
1 ĎC

I
2 ,

and the relation inclusion axiom R1 Ď R2 if RI
1 Ď R

I
2 . It satisfies the concept

instance axiom CNpoq if oI PCNI, the relation instance axiom RNpU1:o1, . . . , Un:
onq if xU1 : oI1 , . . . , Un : oIny PRN

I , and the axioms o1“ o2 and o1‰o2 if oI1 “o
I
2 ,

and oI1 ‰ oI2 , respectively. I is a model of the knowledge base pT ,A,<q if it
satisfies all the axioms in the TBox T and in the ABox A, once the knowledge
base has been rewritten according to the renaming schema.

Example 1. Consider the relation names R1, R2 with τpR1q“tW1,W2,W3,W4u,
τpR2q “ tV1, V2, V3, V4, V5u, and a knowledge base with the renaming axiom
W1W2W3 ÕV3V4V5 and a TBox Texa:

πrW1,W2sR1 Ďπď1rW1,W2sR1 (1)

πrV3, V4sR2 Ďπď1rV3, V4spπrV3, V4, V5sR2q (2)

πrW1,W2,W3sR1 ĎπrV3, V4, V5sR2. (3)

The axiom (1) expresses that W1,W2 form a multi-attribute key for R1; (2)
introduces a functional dependency in the relation R2 where the attribute V5
is functionally dependent from attributes V3, V4, and (3) states an inclusion
between two projections of the relation names R1, R2 based on the renaming
schema axiom. [\

KB satisfiability refers to the problem of deciding the existence of a model
of a given knowledge base; concept satisfiability (resp. relation satisfiability) is
the problem of deciding whether there is a model of the knowledge base with a
non-empty interpretation of a given concept (resp. relation). A knowledge base
entails (or logically implies) an axiom if all models of the knowledge base are also
models of the axiom. For instance, it is easy to see that the TBox in Example 1
entails that V3, V4 are a key for R2:

Texa |ùπrV3, V4sR2 Ďπď1rV3, V4sR2 ,

and that axiom (2) is redundant in Texa. The decision problems in DLR` can
be all reduced to KB satisfiability.

Lemma 2. In DLR`, concept and relation satisfiability and entailment are re-
ducible to KB satisfiability.

3 Expressiveness of DLR`

DLR` is an expressive description logic able to assert relevant constraints in
the context of relational databases, such as inclusion dependencies (namely in-
clusion axioms among arbitrary projections of relations), equijoins, functional
dependency axioms, key and foreign key axioms, external uniqueness axioms,
identification axioms, and path functional dependencies.

An equijoin among two relations with disjoint signatures is the set of all
combinations of tuples in the relations that are equal on their selected attribute
names. Let R1, R2 be relations with signatures τpR1q “ tU,U1, . . . , Un1u and
τpR2q“tV, V1, . . . , Vn2u; their equijoin over U and V is the relation R“R1 ’

U“V
R2

with signature τpRq “ τpR1q Y τpR2qztV u, which is expressed by the DLR`
axioms:

πrU,U1, . . . , Un1
sR”σU :pDrUsR1[DrV sR2qR1

πrV, V1, . . . , Vn2sR”σV :pDrUsR1[DrV sR2qR2

U ÕV .

A functional dependency axiom pR :U1 . . . UjÑUq (also called internal unique-
ness axiom [9]) states that the values of the attributes U1 . . . Uj uniquely de-
termine the value of the attribute U in the relation R. Formally, the interpre-
tation I satisfies this functional dependency axiom if, for all tuples s, t P RI ,
srU1s “ trU1s, . . . , srUjs “ trUjs imply srU s “ trU s. Functional dependencies can
be expressed in DLR`, assuming that tU1, . . . , Uj , UuĎ τpRq, with the axiom:

πrU1, . . . , UjsRĎπď1rU1, . . . , UjspπrU1, . . . , Uj , U sRq.

A special case of a functional dependency are key axioms pR : U1 . . . Uj ÑRq,
which state that the values of the key attributes U1 . . . Uj of a relation R uniquely
identify tuples in R. A key axiom can be expressed in DLR`, assuming that
tU1 . . . UjuĎ τpRq, with the axiom:

πrU1, . . . , UjsRĎπď1rU1, . . . , UjsR.

A foreign key is the obvious result of an inclusion dependency together with
a key constraint involving the foreign key attributes.

The external uniqueness axiom prU1sR1 Ó . . .ÓrU
hsRhq states that the join R

of the relations R1, . . . , Rh via the attributes U1, . . . , Uh has the joined attribute
functionally dependent on all the others [9]. This can be expressed in DLR` with
the axioms:

R”R1 ’
U1“U2

¨ ¨ ¨ ’
Uh´1“Uh

Rh

R :U1
1 , . . . , U

1
n1
, . . . , Uh1 , . . . , U

h
nh
ÑU1

where τpRiq “ tU
i, U i1, . . . , U

i
niu, 1ď iď h, and R is a new relation name with

τpRq“ tU1, U1
1 , . . . , U

1
n1
, . . . , Uh1 , . . . , U

h
nh
u.

Identification axioms as defined in DLRifd [4] (an extension of DLR with

functional dependencies and identification axioms) are a variant of external
uniqueness axioms, constraining only the elements of a concept C; they can
be expressed in DLR` with the axiom:

rU1sσU1:CR1 Ó . . . Ó rU
hsσUh:CRh.

Path functional dependencies—as defined in the description logics family
CFD [16]—can be expressed in DLR` as identification axioms involving joined

sequences of functional binary relations. DLR` also captures the tree-based iden-
tification constraints (tid) introduced in [5] to express functional dependencies
in DL-LiteRDFS,tid.

The rich set of constructors in DLR` allows us to extend the known map-
pings in description logics of popular conceptual database models, and to provide
the foundations for their reasoning tasks. The EER mapping as introduced in [1]
can be extended to deal with multi-attribute keys (by using identification ax-
ioms) and named roles in relations; the ORM mapping as introduced in [8, 15]
can be extended to deal with arbitrary subset and exclusive relation constructs
(by using inclusions among global objectifications of projections of relations),
arbitrary internal and external uniqueness constraints, arbitrary frequency con-
straints (by using projections), local objectification, named roles in relations,
and fact type readings (by using renaming axioms); the UML mapping as intro-
duced in [3] can be fixed to deal properly with association classes (by using local
objectification) and named roles in associations.

Aside from conceptual modelling, DLR` could be studied in relation to
other tasks relevant for database scenarios, such as query answering [6], con-
straint checking with respect to a partially closed world (i.e., with DBoxes [13]),
inconsistent database repairing, etc. In this paper, we focus just on the basic
consistency and entailment reasoning tasks.

4 The DLR˘ fragment of DLR`

Since a DLR` knowledge base can express inclusions and functional dependen-
cies, the entailment problem is undecidable [7]. Thus, in this section we present
DLR˘, a decidable syntactic fragment of DLR` limiting the coexistence of re-
lation projections in a knowledge base.

Given a DLR` knowledge base KB “ pT ,A,<q, we define the projection
signature of KB as the set T containing the signatures τpRNq of all relations
RN PR, the singleton sets associated with each attribute name U P U , and the
relation signatures that appear explicitly in projection constructs in some axiom
from T , together with their implicit occurrences due to the renaming schema.
Formally, T is the smallest set such that (i) τpRNqPT for all RN PR; (ii) tUuPT

for all U P U ; and (iii) tU1, . . . , Uku PT for all πĳqrV1, . . . , VksR appearing as
sub-formulas in T and Vi P rUis< for 1ďiďk.

The projection signature graph of KB is the directed acyclic graph corre-
sponding to the Hasse diagram of T ordered by the proper subset relation Ą,
whose sinks are the attribute singletons tUu. We call this graph pĄ,T q. Given
a set of attributes τ “ tU1, . . . , Uku Ď U , the projection signature graph domi-
nated by τ , denoted as Tτ , is the sub-graph of pĄ,T q with τ as root and con-
taining all the nodes reachable from τ . Given two sets of attributes τ1, τ2 Ď U ,
pathT pτ1, τ2q denotes the set of paths in pĄ,T q between τ1 and τ2. Note that,
pathT pτ1, τ2q “H both when a path does not exist and when τ1Ď τ2. The no-
tation childT pτ1, τ2q means that τ2 is a child (i.e., a direct descendant) of τ1 in
pĄ,T q. We now introduce DLR˘ as follows.

tW1,W2,W3,W4u tV1, V2, V3, V4, V5u

tW4u

#

W1,W2,W3

V3, V4, V5

+

tV1u tV2u

#

W1,W2

V3, V4

+ #

W3

V5

+

#

W1

V3

+ #

W2

V4

+

Fig. 4. The projection signature graph of Example 1.

Definition 3. A DLR˘ knowledge base is a DLR` knowledge base that satis-
fies the following syntactic conditions:

1. the projection signature graph pĄ,T q is a multitree: i.e., for every node
τ PT , the graph Tτ is a tree; and

2. for every projection construct πĳqrU1, . . . , UksR and every concept expression
of the form DěqrU1sR appearing in T , if q ą 1 then the length of the path
pathT pτpRq, tU1, . . . , Ukuq is 1.

The first condition in DLR˘ restrict DLR` in the way that multiple projections
of relations may appear in a knowledge base: intuitively, there cannot be differ-
ent projections sharing a common attribute. Moreover, observe that in DLR˘
pathT is necessarily functional, due to the multitree restriction. By relaxing
the first condition the language becomes undecidable, as we mentioned at the
beginning of this Section. The second condition is also necessary to prove de-
cidability of DLR˘; however, we do not know whether this condition could be
relaxed while preserving decidability.

Figure 4 shows that the projection signature graph of the knowledge base
from Example 1 is indeed a multitree. Note that in the figure we have collapsed
equivalent attributes in a unique equivalence class, according to the renaming
schema. Furthermore, since all its projection constructs have q“ 1, this knowl-
edge base belongs to DLR˘.

DLR is included in DLR˘, since the projection signature graph of any DLR
knowledge base is always a degenerate multitree with maximum depth equal to
1. Not all the database constraints as introduced in Section 3 can be directly
expressed in DLR˘. While functional dependency and key axioms can be ex-
pressed directly in DLR˘, equijoins, external uniqueness axioms, and identifica-
tion axioms introduce projections of a relation which share common attributes,
thus violating the multitree restriction. For example, the axioms for capturing

an equijoin between two relations, R1, R2 would generate a projection signature
graph with the signatures of R1, R2 as projections of the signature of the join
relation R sharing the attribute on which the join is performed, thus violating
condition 1.

However, in DLR˘ it is still possible to reason over both external uniqueness
and identification axioms by encoding them into a set of saturated ABoxes (as
originally proposed in [4]) and check whether there is a saturation that satisfies
the constraints. Therefore, we can conclude that DLRifd extended with unary

functional dependencies is included in DLR˘, provided that projections of rela-
tions in the knowledge base form a multitree projection signature graph. Since
(unary) functional dependencies are expressed via the inclusions of projections
of relations, by constraining the projection signature graph to be a multitree, the
possibility to build combinations of functional dependencies as the ones in [4]
leading to undecidability is ruled out.

Note that the non-conflicting keys sufficient condition guaranteeing the de-
cidability of inclusion dependencies and keys of [12] is in conflict with our more
restrictive requirement: indeed [12] allow for overlapping projections, but the
considered datalog language is not comparable to DLR`. In general, descrip-
tion logic based languages, such as DLR`, and datalog based languages, such
as the language proposed in [12], are incomparable in terms of expressiveness,
due to the inability of description logics to distinguish non-tree models in the
TBox. Note that, unlike the typical restrictions of datalog-like languages, there is
no problem in stating arbitrary cyclic dependencies in relation inclusion axioms
involving projections on the left and right hand sides.

Concerning the ability of DLR˘ to capture conceptual data models, only the
mapping of ORM schemas is affected by the DLR˘ restrictions: DLR˘ is able
to correctly express an ORM schema if the projections involved in the schema
satisfy the DLR˘ multitree restriction.

5 Mapping DLR˘ to ALCQI

This section shows constructively the main technical result of this paper, i.e.,
that reasoning in DLR˘ is an ExpTime-complete problem. The lower bound
is clear by observing that DLR is a sublanguage of DLR˘. More challenging is
the upper bound obtained by providing a mapping from DLR˘ knowledge bases
to ALCQI knowledge bases—a propositionally complete description logic with
qualified number restrictions DěqR.C, and inverse roles R´ (see [2] for more
details). We adapt and extend the mapping presented for DLR in [6], with the
modifications proposed by [10] to deal with ABoxes without the unique name
assumption.

We recall that the renaming schema < does not play any role since we as-
sumed that a DLR˘ knowledge base is rewritten by choosing a single canonical
representative for each equivalence class of attributes induced by <. Thus, we
consider DLR˘ knowledge bases as pairs of TBox and ABox axioms.

p Cq: “ C:

pC1 [C2q
:
“ C:1 [C

:

2

pD
ěq
rUisRq

:
“

#

D
ěq

`

pathT pτpRq, tUiuq
:
˘´

.R:, if pathT pτpRq, tUiuq‰H

K, otherwise

p
Å

Rq: “ R:

p
Ä

RNq: “ AlRN

pR1zR2q
:
“ R:1 [R

:

2

pR1 [R2q
:
“ R:1 [R

:

2

pR1 \R2q
:
“

#

R:1 \R
:

2, if τpR1q“ τpR2q

K, otherwise

pσUi:CRq
:
“

#

R: [@pathT pτpRq, tUiuq
:.C:, if pathT pτpRq, tUiuq‰H

K, otherwise

pπĳqrU1, . . . , UksRq
:
“

$

’

’

&

’

’

%

D
ě1,ĳq

`

pathT pτpRq, tU1, . . . , Ukuq
:
˘´

.R:,

if pathT pτpRq, tU1, . . . , Ukuq‰H

K, otherwise

Fig. 5. The mapping to ALCQI for concept and relation expressions.

We first introduce a mapping function ¨: from DLR˘ concepts and relations
to ALCQI concepts. The function ¨: maps each concept name CN and each
relation name RN appearing in the DLR˘ KB to the ALCQI concept names CN
and ARN , respectively. The latter can be informally understood as the “global”
reification of RN . For each relation name RN , the ALCQI signature also includes
a concept name AlRN and a role name QRN to capture local objectification.
The mapping ¨: is extended to concept and relation expressions as illustrated
in Figure 5, where the notation Dě1,ĳqR.C is a shortcut for the conjunction
DR.C [DĳqR.C.

The mapping crucially uses the projection signature graph to map projec-
tions and selections, by accessing paths in the projection signature graph pĄ,T q
associated to the DLR˘ KB. If there is a path pathT pτ, τ

1q “ τ, τ1, . . . , τn, τ
1

from τ to τ 1 in T , then the ALCQI signature contains role names Qτ 1 , Qτi , for
i“1, . . . , n, and the following role chain expression is generated by the mapping:

pathT pτ, τ
1q:“Qτ1 ˝ . . . ˝Qτn ˝Qτ 1 ,

In particular, the mapping uses the following notation: the inverse role chain
pR1 ˝ . . . ˝ Rnq

´, for Ri a role name, stands for the chain R´n ˝ . . . ˝ R
´
1 , with

R´i an inverse role, the expression Dĳ1R1 ˝ . . . ˝ Rn.C stands for the ALCQI
concept expression Dĳ1R1. D

ĳ1Rn.C and @R1 ˝ . . . ˝ Rn.C for the ALCQI
concept expression @R1.@Rn.C. Thus, since DLR˘ restricts to q “ 1 the
cardinalities on any path of length strictly greater than 1 (see condition 2 in
Def. 3), the above notation shows that we remain within the ALCQI syntax

AR1 AR2

A
tW4u

R1
A
tW1,W2,W3u

R1
, A
tW1,W2,W3u

R2
A
tV1u

R2
A
tV2u

R2

A
tW1,W2u

R1
, A
tW1,W2u

R2
A
tW3u

R1
, A
tW3u

R2

A
tW1u

R1
, A
tW1u

R2
A
tW2u

R1
, A
tW2u

R2

QtW4u

Q
tW

1 ,W
2 ,W

3 u QtW
1
,W2

,W3
u

QtV1u QtV2u

QtW1,W2u

Q
tW

3 u

QtW
1
u

QtW2u

Fig. 6. The ALCQI signature generated by Texa.

when the mapping applies to cardinalities. If, e.g., we need to map the DLR˘
cardinality constraint DĳqrUisR with q ą 1, then, to stay within the ALCQI
syntax, Ui must not be mentioned in any other projection in such a way that
|pathT pτpRq, tUiuq| “ 1. Finally, notice that the mapping introduces a concept
name AτiRN for each projected signature τi in the projection signature graph
dominated by τpRNq, i.e., τiPTτpRNq, informally to capture the global reifications
of the various projections of RN in the given KB. We also use the shortcut ARN
which stands for A

τpRNq
RN .

Intuitively, each node in the projection signature graph associated to a DLR˘
KB denotes a relation projection and the mapping reifies each of these projec-
tions. The target ALCQI signature resulting from mapping the DLR˘ KB of
Example 1 is partially presented in Fig. 6, together with the projection signature
graph (showed in Fig. 4). Each node of the graph is labelled with the correspond-
ing global reification concept (A

τj
Ri

), for each RiPR and each projected signature
τj in the projection signature graph dominated by τpRiq, while the edges are
labelled by the roles (Qτi) needed for the reification.

To better clarify the need for the path function in the mapping, notice
that each DLR˘ relation is reified according to the decomposition dictated
by the projection signature graph it dominates. Thus, to access, e.g., an at-
tribute Uj of a DLR˘ relation Ri it is necessary to follow the path through
the projections that use the attribute. Such a path, from the node denoting
the whole signature of the relation, τpRiq, to the node denoting the attribute
Uj is returned by the pathT pτpRiq, Ujq function. For example, considering the
example in Fig. 6, to access the attribute W1 of the relation R2 in the ex-
pression pσW1:CR2q, the mapping of the path pathT pτpR2q, tW1uq

: is equal to

γpT q“ γdsj Y
ď

RNPR
γrelpRNq Y

ď

RNPR
γlobjpRNq Y

ď

C1ĎC2PKB
C:1 ĎC:2 Y

ď

R1ĎR2PKB
R:1 ĎR:2

γdsj“

AτiRN1
Ď A

τj
RN2

|RN1, RN2 PR,

τi PTτpRN1q, τj PTτpRN2q, |τi| ě 2, |τj | ě 2, τi‰ τj
(

γrelpRNq“
ď

τiPTτpRNq

ď

childT pτi,τjq

AτiRN Ď DQτj .A
τj
RN , D

ě2Qτj .JĎK
(

γlobjpRNq“ tARN Ď DQRN .AlRN , D
ě2QRN .JĎK,

AlRN Ď DQ´RN .ARN , D
ě2Q´RN .JĎKu.

Fig. 7. The mapping into a ALCQI KB.

the role chain QtW1,W2,W3u ˝ QtW1,W2u ˝ QtW1u, so that pσW1:CR2q
: “ AR2

[

@QtW1,W2,W3u.@QtW1,W2u.@QtW1u.C. Similar considerations can be done when
mapping cardinalities over relation projections.

Figures 7 and 8 present in details the mapping of a DLR˘ KB into a KB in
ALCQI. Let KB “ pT ,Aq be a DLR˘ KB with signature pC,R,O,U , τq. The
mapping γpKBq is assumed to be unsatisfiable (i.e., it contains the axiom JĎK)
if the ABox contains the relation assertion RNptq with τpRNq ‰ τptq, for some
relation RN PR and some tuple t. Otherwise, γpKBq“ pγpT q, γpAqq defines the
mapped ALCQI KB.

Intuitively, γdsj ensures that relations with different signatures are disjoint,
thus, e.g., enforcing the union compatibility. The axioms in γrel introduce classi-
cal reification axioms for each relation and its relevant projections. The axioms
in γlobj make sure that each local objectification differs from the global one while
each role QRN defines a bijection.

To translate the ABox, we first map each individual oPO in the DLR˘ ABox
A to an ALCQI individual o. Each tuple in relation instance axioms occurring
in A is mapped via an injective function ξ to a distinct individual. That is,
ξ :TOpUqÑOALCQI , with OALCQI “O YOt being the set of individual names
in γpKBq, O XOt“H and

ξptq “

#

o PO, if t“xU :oy

o POt, otherwise.

Following [10], the mapping γpAq in Fig. 8 introduces a new concept name Qo
for each individual o PO and a new concept name Qt for each relation instance
t occurring in A, with each Qt restricted as follows:

Qt ĎDď1
`

pathT pτptq, tU1uq
:
˘´

.

D
`

pathT pτptq, tU2uq
:
˘

.Qo2 [. . .[D
`

pathT pτptq, tUnuq
:
˘

.Qon

Intuitively, (6) and (7) reify each relation instance axiom occurring in A using the

γpAq“tCN:poq |CNpoq PAu Y (4)

to1‰ o2 | o1‰ o2 PAu Y to1“ o2 | o1“ o2 PAu Y (5)

tAτiRN pξptrτisqq |RNptq PA and τi PTτpRNqu Y (6)

tQτj
`

ξptrτisq, ξptrτjsq
˘

|RNptq PA, τi PTτpRNq and childT pτi, τjqu Y (7)

tQopoq | o POu Y (8)

tQtpo1q | t“xU1:o1, . . . , Un:ony occurs in Au. (9)

Fig. 8. The mapping γpAq

projection signature of the involved tuple itself. The formulas (8)-(9) together
with the axioms for concepts Qt guarantee that there is exactly one ALCQI
individual reifying a given tuple in a relation instance axiom. Clearly, the size of
γpKBq is polynomial in the size of KB under the same coding of the numerical
parameters.

We are now able to state our main technical result.

Theorem 4. A DLR˘ knowledge base KB is satisfiable iff the ALCQI knowl-
edge base γpKBq is satisfiable.

As a direct consequence of this theorem and the fact that DLR is a sublanguage
of DLR˘, we obtain the following corollary.

Corollary 5. Reasoning in DLR˘ is ExpTime-complete.

6 Implementation of a DLR˘ API

We have implemented the framework discussed in this paper. DLRtoOWL is a
Java library fully implementing DLR˘ reasoning services. The library is based
on the tool ANTLR4 to parse serialised input, and on OWLAPI4 for the OWL2
encoding, and it includes the OWL reasoner JFact. DLRtoOWL provides a Java
DLR API package to allow developers to create, manipulate, serialise, and reason
with DLR˘ knowledge bases in their Java-based application, extending in a
compatible way the standard OWL API with the DLR˘ tell and ask services.

During the development of this new library we strongly focused on perfor-
mance. Since the OWL encoding is only possible if we have already built the
ALCQI projection signature multitree, in principle the program should perform
two parsing rounds: one to create the multitree and the other one to generate
the OWL mapping. We faced this issue using dynamic programming: during the
first (and only) parsing round we store in a data structure each axiom that we
want to translate in OWL and, after building the multitree, by the dynamic
programming technique we build on-the-fly a Java class which generates the
required axioms.

We have used the DLR˘ API within a plugin for general ontology reason-
ing for conceptual design tools based on languages such as EER, UML (with
OCL), and ORM (with derivation rules) [14]. This plugin supports the detection
of inconsistencies, redundancies, complete derivations of the strictest implicit
constructs and unexpected behaviours. Reasoning helps the modeller to detect
relevant formal properties of the ontology that may be undetected during the
modelling phase, which give rise to design quality degradation and/or increased
development times and costs. The system is still at an early stage of completion,
but it has been proved to be highly effective and efficient: indeed, it computes
derivations in real time in the background while the ontology is being designed.

7 Conclusions

We have introduced the very expressive DLR`description logic, which extends
DLR with database oriented constraints. DLR` is expressive enough to cover
directly and more thoroughly the EER, UML, and ORM conceptual data models,
among others. Although reasoning in DLR` is undecidable, we show that a
simple syntactic constraint on KBs restores decidability. In fact, the resulting
logic DLR˘ has the same complexity (ExpTime-complete) as the basic DLR
language. In other words, handling database constraints does not increase the
complexity of reasoning in the logic. To enhance the use and adoption of DLR˘,
we have developed an API that fully implements reasoning for this language,
and maps input knowledge bases into OWL. Using a standard OWL reasoner,
we are able to provide a variety of DLR˘ reasoning services.

We plan to investigate the problem of query answering under DLR˘ ontolo-
gies and to check whether the complexity for this problem can be lifted from
known results in DLR to DLR˘.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Rea-
soning over extended ER models. In: Proc. of the 26th Int. Conf. on Conceptual
Modeling (ER’07). Lecture Notes in Computer Science, vol. 4801, pp. 277–292.
Springer (2007)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press (2003)

3. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artificial Intelligence 168(1–2), 70–118 (2005)

4. Calvanese, D., De Giacomo, G., Lenzerini, M.: Identification constraints and func-
tional dependencies in description logics. In: Proceedings of the Seventeenth Inter-
national Joint Conference on Artificial Intelligence, IJCAI-01. pp. 155–160. Morgan
Kaufmann (2001)

5. Calvanese, D., Fischl, W., Pichler, R., Sallinger, E., Simkus, M.: Capturing rela-
tional schemas and functional dependencies in RDFS. In: Proceedings of the 28th
AAAI Conference on Artificial Intelligence (AAAI). pp. 1003–1011. AAAI Press
(2014)

6. Calvanese, D., Giacomo, G.D., Lenzerini, M.: Conjunctive query containment and
answering under description logic constraints. ACM Trans. Comput. Logic 9(3),
22:1–22:31 (Jun 2008)

7. Chandra, A.K., Vardi, M.Y.: The implication problem for functional and inclusion
dependencies is undecidable. SIAM Journal on Compututing 14(3), 671–677 (1985)

8. Franconi, E., Mosca, A., Solomakhin, D.: ORM2: formalisation and encoding in
OWL2. In: International Workshop on Fact-Oriented Modeling (ORM 2012). pp.
368–378 (2012)

9. Halpin, T., Morgan, T.: Information Modeling and Relational Databases. Morgan
Kaufmann, 2nd edn. (2008)

10. Horrocks, I., Sattler, U., Tessaris, S., Tobies, S.: How to decide query containment
under constraints using a description logic. In: 7th International Conference on
Logic for Programming and Automated Reasoning (LPAR00), 2000. pp. 326–343
(2000)

11. Kanellakis, P.C.: Elements of relational database theory. In: Meyer, A., Nivat, M.,
Paterson, M., Perrin, D., van Leeuwen, J. (eds.) The Handbook of Theoretical
Computer Science, vol. B, chap. 17, pp. 1075–1144. North Holland (1990)

12. Lukasiewicz, T., Cali, A., Gottlob, G.: A general datalog-based framework for
tractable query answering over ontologies. Web Semantics: Science, Services and
Agents on the World Wide Web 14(0) (2012)

13. Patel-Schneider, P.F., Franconi, E.: Ontology constraints in incomplete and com-
plete data. In: ISWC 2012 - 11th International Semantic Web Conference. Lecture
Notes in Computer Science, vol. 7649, pp. 444–459. Springer-Verlag (2012)

14. Sportelli, F.: NORMA: A software for intelligent conceptual modeling. In: Pro-
ceedings of the Joint Ontology Workshops 2016 (JOWO-2016) (2016), http://ceur-
ws.org/Vol-1660/demo-paper3.pdf

15. Sportelli, F., Franconi, E.: Formalisation of ORM derivation rules and their map-
ping into OWL. In: ODBASE Conference 2016. pp. 827–843 (2016)

16. Toman, D., Weddell, G.E.: Applications and extensions of PTIME description
logics with functional constraints. In: IJCAI 2009, Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence. pp. 948–954 (2009)

