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Abstract. Knowledge Graphs (KGs) effectively capture explicit relational knowl-
edge about individual entities. However, visual attributes of those entities, like
their shape and color and pragmatic aspects concerning their usage in natural lan-
guage are not covered. Recent approaches encode such knowledge by learning la-
tent representations (‘embeddings’) separately: In computer vision, visual object
features are learned from large image collections and in computational linguistics,
word embeddings are extracted from huge text corpora which capture their distri-
butional semantics. We investigate the potential of complementing the relational
knowledge captured in KG embeddings with knowledge from text documents
and images by learning a shared latent representation that integrates information
across those modalities. Our empirical results show that a joined concept rep-
resentation provides measurable benefits for i) semantic similarity benchmarks,
since it shows a higher correlation with the human notion of similarity than uni-
or bi-modal representations, and ii) entity-type prediction tasks, since it clearly
outperforms plain KG embeddings. These findings encourage further research
towards capturing types of knowledge that go beyond today’s KGs.
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1 Introduction

In recent years, several large, cross-domain, and openly available knowledge graphs
(KGs) have been created. They offer an impressively large collection of cross-domain,
general knowledge about the world, specifically instantiated relations between individ-
ual entities (statements). However, there is a lack of other types of information like
visual object features or distributional semantics about the usage of those entities in the
context of textual descriptions of real-world events.
Consider for instance the entity ‘baseball’ as depicted in Fig. 1: Images of baseballs pro-
vide basic visual information about the shape and color, something that is not present in
KGs. While it is theoretically possible to make such information explicit with a graph-
based formalism, it is not the obvious choice, since the detailed formal modelling of a



Fig. 1: Approach for extracting a shared cross-modal concept space from image, text
and knowledge graph (aligned on word-level).

shape or texture is far less efficient than capturing this with an unstructured representa-
tion like an image.

Similarly, text documents contain another type of essential information that is not avail-
able in KGs. Texts that mention ‘baseball’ typically comment or analyze baseball games
and players. Since there is a huge number of examples on the actual usage of terms in
text, this provides distributional context which is not available via the graph-neighbor-
hood of the entity ‘baseball’ in a KG. KGs contain rather stable relations between indi-
vidual entities, like attributes of baseball teams, their locations, equipment and abstract
categorizations such as a ’Bat and Ball Game’.

It seems obvious that the three modalities (KGs, Text, Images) contribute different types
of complementing information. Considering recent results in extraction of visual and
textual content, that indicate an advantage of exploiting both modalities simultaneously
to represent concepts [18], there also seems to be potential for tri-modal embeddings of
textual context, visual information and relational knowledge of KG concepts.

This work investigates the influence of additional modalities on concept representations
by means of a tri-modal embedding space that fuses information from text documents
and image collections with knowledge graphs. When evaluating the resulting latent con-
cept representation on standard similarity benchmarks, it indeed shows a higher correla-
tion with the human notion of concept similarity than uni- (e.g., KG only) or bi-modal
representations. Also, KG embeddings fused with embeddings trained on visual and



textual documents clearly outperform their uni-modal counterparts on KG completion
tasks like entity-type prediction.
This convincingly demonstrates the great potential of joining latent knowledge rep-
resentations constructed from multiple modalities, as detailed in the following sec-
tions. First, we discuss related work (Sec. 2), introduce existing uni-modal embeddings
(Sec. 3), before explaining how they are aligned (Sec. 4) and fused (Sec. 5). We demon-
strate its potential on similarity benchmarks (Sec. 6.1) and analyze its fusion effects
(Sec. 6.2). In Sec. 6.3, we look into entity segmentation and assess entity-type predic-
tion in Sec. 6.4, before we summarize our findings (Sec. 6.5) and conclude (Sec. 7).

2 Related Work on Fusion of Learned Representations

Recently, several researchers have tried to transfer learned knowledge from one task to
another or to combine different approaches. In image classification, it is important that
also new images can be classified so that visual representations from one image classi-
fication task can be transferred to another with different classes. To this end, Oquab et
al. [27] learn and transfer mid-level image representations of CNNs. Kiela and Bottou
[18] test the combination of visual and textual representations via vector stacking which
is similar to [33] which uses a stacked auto-encoder to combine visual and textual in-
put. In contrast to our approach they only evaluate simple vector stacking and neither
evaluate more sophisticated combination techniques nor the incorporation of structured
resources like KGs.
In contrast, Goikoetxea et al. [11] use textual information from a text corpus and Word-
Net. For this purpose, WordNet is transferred to text by performing random walks on
the synset hierarchy and hereby storing the traversal path to text [12]. But, they neither
use visual representations nor do they work with the information of an expressive KG
directly. The transformation of a traversal path to text might lose characteristics of the
underlying graph structure which is why we used latent vector representations from an
explicit KG model, learned on a complete KG. Furthermore, they only combine vectors
of equal size to circumvent the dimensionality bias while we introduce an appropriate
normalization and weighting scheme.
Our approach also goes beyond current retrofitting ideas like [9]. They adjust learned
word embeddings by incorporating information from lexical databases. Firstly, we do
not slightly adapt one representation but learn a completely new combined representa-
tion. Secondly, we use much more information from a large expressive KG (DBpedia)
instead of a smaller lexical database. Lastly, we also use visual information.
The closest work to our word-level alignment to concept space is [30]1. They used
autoencoders with rank 4 weight tensors to create vector representations for synsets
and lexemes in WordNet for which there was no learned vector representation before.
They achieve this by treating a word and a synset as the sum of its lexemes.
The closest work to our approach are [14] and [6]. Hill et al. [14] add explicit image tag
information into the textual representation by adding the image tags into the training

1 Please note, that they did not consider any combinations with visual or KG embeddings.



data. By placing the tags next to the words, they include the connection between word
and its explicit visual features (tags). Then again, [6] concatenate and fuse latent ’visual
words’ and textual representations with singular value decomposition (SVD). Their re-
sults on bi-modal experiments indicate that multi-modal information is useful and can
be harnessed. In addition to [6], we also consider relational knowledge from a KG, test
further combination methods and evaluate on different tasks.

3 Uni-Modal Vector Representations

Latent vector representations of various types have become quite popular in recent
years. The most common ones are latent textual representations, which are also re-
ferred to as word embeddings, distributional word semantics or distributed word repre-
sentations. Created with unsupervised methods, they only rely on a huge text corpus as
input. The information of co-occurrences with other words is encoded in a dense vector
representation and by calculating the cosine similarity between two representations, a
similarity score between two words is obtained. Examples for such textual representa-
tions are [2], SENNA [7], hierarchical log-bilinear models [24], word2vec [21–23], and
GloVe [28]. Word embeddings are able to capture the distributional knowledge of how
words are used across huge document collections.
Similarly, images can be encoded in a latent vector space. For image representations,
deep convolutional neural networks (CNNs) have shown promising results in recent
years. Deep CNNs transfer an image into a low dimensional vector space representation
e.g. for image classification by applying a softmax function. The latent vector represen-
tation for images correspond to layers in the deep CNN before applying the softmax.
For image classification with CNNs, Inception-V3 [34] which is used in TensorFlow
[1] has shown good results on the ImageNet classification task [31]. Image embeddings
are able to capture abstract visual attributes of objects, like their abstract shape.
The term ’Knowledge Graph’ was revived by Google in 2012 and is since then used
for any graph-based knowledge base, the most popular examples being DBpedia, Wiki-
data, and YAGO (see [8] for a survey). Similarly, knowledge graph embeddings can
be learned on those graphs consisting of entities and typed predicates between entities
and abstract concepts. These entities and predicates can be encoded in a low dimen-
sional vector space, facilitating the computation of probabilities for relations within
the knowledge graph which can be used for link prediction tasks [29]. Examples for
learning latent vector representations of knowledge graphs are SE [5], RESCAL [26],
LFM [17], TransE [4], SME [3], HolE [25], ComplEx [35], and the SUNS framework
[16]. KG embeddings are obtained by collective learning which is able to capture the
relational structure of related entities in a KG.

4 Tri-Modal Concatenated Concept Space

The aim of this paper is to assess the potential of integrating distributional, visual,
and relational knowledge into one representation. For obtaining such a consolidated



tri-modal space, an embedding across all modalities is needed. Most existing bi-modal
approaches rely on manually aligned document collections. Thus, an explicit reference
(i.e., DBpedia URI) to the mentioned or depicted concept cannot be established, since
a whole document is embedded and no individual concepts. This is not suitable for
our investigations, since we want to assess how representations of single concepts can
benefit from multi-modal embeddings. Instead, we build on pre-trained uni-modal rep-
resentations (KG entities, words and visual objects) and align them across modalities.

We chose the most established approaches from their respective fields2: For textual em-
beddings we picked the word2vec model and Inception-V3 for visual embeddings. For
knowledge graph embeddings, we trained representations using the TransE model [19].
To establish which embeddings represent the same concept in the different modalities
we align them on a word-level:

Matching of Word Embeddings: We identified the intersection of word2vec em-
beddings that are represented by all modalities.

Concept Mapping of KG Embeddings: The latent vectors of TransE are represent-
ing concepts in the DBpedia graph. Each concept is uniquely addressable through a
DBpedia URI and several labels (surface forms) are provided. We use the most com-
monly used label for referring to the concept.

WordNet Mapping of Visual Objects: For visual representations, we use the im-
ages from ImageNet 1k [31] which consists of 1000 categories. Each category has a set
of at least 1300 images for the respective concept and is linked to synsets in WordNet.
By combining all image representations for a given synset, we obtain a visual represen-
tation for the synset. Alike to [18] we combine the image representations by taking the
max-value for each vector index as this yielded better results compared to mean values.
Additionally, we build more abstract synset representations by utilizing the WordNet hi-
erarchy, e.g. an embedding of ‘instrument’ can be created by combining embeddings of
‘violin’, ’harp’, etc. We build hierarchical subtrees in WordNet for each missing synset
in ImageNet 1k. All synset representations in such a subtree with a visual representation
from ImageNet 1k are then combined with a feature-wise max operator to form an ab-
stract synset representation. In total, we abstract 396 additional synset representations.
The alignment of the synset representations to a shared set of concepts are performed
with the WordNet lexemes which are assigned to at least one synset in WordNet. In the
end, we extract 2574 lexeme representations by averaging the synset representations
related to a given lexeme.

The intersection of Inception-V3 with word2vec and TransE embeddings leads to an
aligned tri-modal concept space containing 1538 concepts. For each shared concept,
the representations from all modalities are concatenated so that fusion techniques for
the resulting concept space TriM1538 can be applied next (see Fig. 1).

2 Please note, that any other embedding approach (see Sec. 3), could be plugged into our ap-
proach. We are not aiming to compete on uni-modal benchmarks but investigate the impact of
additional modalities regardless of the original embedding approach.



5 Shared Cross-modal Concept Space

For fusing distributional, visual, and relational knowledge from the respective modal-
ities, we used several methods which are described in the following paragraphs. Apart
from simple concatenation we build on methods like SVD and PCA by proposing a
normalization (N) and weighting (W) scheme for embeddings from multiple modalities.
Our tri-modal concept space of 1538 different concepts is represented in three matri-
ces: text T , knowledge graph G, and visual V . For combination techniques, we use the
whole information of all three modalities and define matrix M ∈ R(t+g+v)×1538 as the
vertically stacked matrices of T , G, and V . The dimensionality of these three matri-
ces varies drastically: Visual representations tend to have more than 1000 dimensions
while knowledge graph representations typically have around 50 to 100 dimensions.
Thus, the representations with higher dimensionalities tend to dominate the combina-
tion techniques. Furthermore, the value range of features can differ depending on the
underlying training objective and method. To address these problems we propose pre-
processing steps, comprising normalization (N) of each column vector of T , G, and
V to unit length as well as weighting (W) of the normalized matrices with weights wT ,
wG, andwV before stacking. Thus, we can take into account that certain representations
are more informative and condensed than others.

AVG: The averaging method uses the cosine similarity of all three modalities which
are calculated separately. By averaging these three values, we get a combined similarity
measure which is also robust with respect to different vector dimensionalities.

CONC: The similarity for the concatenated vectors of the single representations can
be calculated with the cosine similarity. The similarities of the following techniques are
also calculated with cosine similarity.

SVD: Singular value decomposition factorizes the input matrixM into three matrices
such that M = UΣV T . U and V are unitary matrices and Σ is a diagonal matrix
with the singular values of M in descending order on its diagonal. By taking the first
k columns of U and the k biggest singular values of Σ, we get a new combined k-
dimensional representation: M ←Mk = UkΣk.

PCA: Principal Component Analysis uses an orthogonal transformation to convert
the correlated variables into linearly uncorrelated variables. Fixing the number of un-
correlated principal components results in a projection into a lower dimensional vector
space. By taking the principal components with the highest variance, we create a repre-
sentation with the most distinctive features. We also tested canonical correlation anal-
ysis (CCA) but in our tests PCA always performed superior which is consistent with
[11]. Thus, we omitted further attempts based on CCA.

AUTO: Autoencoders are neural networks for learning efficient encodings (represen-
tations). Autoencoders consist of an encode and a decode function for transforming an
input vector to a lower dimensional encoding which can be decoded again. The neural
network variables are learned by reducing the reconstruction error between the encoded
and subsequently decoded columns of M compared to its original column.



6 Experiments

To investigate if our joint embedding approach is able to integrate distributional, visual,
and relational knowledge from the respective modalities and ultimately if common tasks
benefit from that, we conducted qualitative and quantitative empirical tests. In our as-
sessments, we use pre-trained representations for text and images as well as trained
knowledge graph representations. For the textual representation we use word2vec3.
Its vectors have 300 dimensions and were trained on the Google News corpus con-
taining about 100 billion words. For visual representations, the Inception-V3 model4,
pre-trained on the ImageNet 1k classification task, was applied to compute represen-
tations with 2048 dimensions. Knowledge graph representations were obtained with
the TransE model [4] which we trained by running TransE on DBpedia. We trained
TransE with a local closed word assumption for type constraints, rank=50, gamma=0.3,
learningrate-embeddings=0.2 and learningrate-parameters=0.5 on the latest DBpedia
dump (April 2016). We made all used embeddings available online5.

6.1 Word Similarity

For evaluating whether a joint embedding captures the human notion of similarity better
than uni-modal embeddings, we utilize various word similarity datasets. These datasets
were created by several persons that rated the similarity of word pairs like ’cheetah -
lion’. Since TriM1538 does not cover all words in the evaluation datasets6, we evaluate
on the covered subsets and provide them online5. To ensure that the subsets used for
evaluation are not easier to align we compared the word2vec performance to the full
set. Table 1 shows the performance of word2vec on the respective datasets MEN [6],
WS-353 [10], SimLex-999 [15], and MTurk-771 [13]. We also report the average perfor-
mance over all evaluation datasets, weighted by their respective size. Table 1 confirms
that similarities in the subsets are equally hard to predict.

Table 1: Spearman’s rank correlation on subsets and complete datasets for word2vec.
MEN WS- SimLex- MTurk- weighted

353 999 771 ∅
complete data 0.762 0.700 0.442 0.671 0.682
subset 0.740 0.694 0.441 0.608 0.672

In Table 2, the Spearman’s rank correlation on all subsets for raw stacking, normaliza-
tion (N) and weighting (W) is reported. Normalized representations allow for a fixed

3 https://code.google.com/archive/p/word2vec/
4 http://download.tensorflow.org/models/image/imagenet/
inception-v3-2016-03-01.tar.gz

5 https://people.aifb.kit.edu/sto/TriM1538
6 Naturally, the limiting factors are verbs, abstract words, and named entities (e.g. persons) for

which no visual representation is available.



Table 2: Spearman’s rank correlation on subsets of evaluation datasets.
MEN WS- SimLex- MTurk- weighted

353 999 771 ∅
Visual 0.619 0.526 0.522 0.308 0.546
Textual 0.740 0.707 0.423 0.594 0.669
KG 0.452 0.433 0.284 0.097 0.369
AVG 0.738 0.595 0.460 0.485 0.643
CONC 0.620 0.520 0.518 0.317 0.546
SVD 0.739 0.646 0.591 0.352 0.646
PCA 0.710 0.595 0.663 0.354 0.634
AUTO 0.456 0.672 0.485 0.294 0.456
AVG-N 0.738 0.595 0.460 0.485 0.643
CONC-N 0.738 0.595 0.460 0.485 0.643
SVD-N 0.724 0.555 0.422 0.440 0.618
PCA-N 0.769 0.601 0.452 0.558 0.673
AUTO-N 0.742 0.607 0.473 0.527 0.655
AVG-W 0.795 0.726 0.592 0.577 0.724
CONC-W 0.795 0.726 0.598 0.574 0.724
SVD-W 0.826 0.722 0.633 0.667 0.762
PCA-W 0.831 0.758 0.688 0.567 0.760

combination ratio, resembling an equal weight of information from all modalities. We
conducted experiments with different dimension parameters for SVD, PCA, and AUTO.
Our results indicate that 100 dimensions are sufficient to encode the information for the
word similarity task. In case of simple stacking (second block in Table 2), none of the
combination methods is significantly better than the uni-modal text representation on
the MEN, MTurk-771, and WS-353 subset. Also, combination methods with normaliza-
tion (N) are not significantly and consistently outperforming the textual representation.
To investigate if modalities are equally informative or provide complementary infor-
mation we use weighting (W) of representations after normalization in order to quan-
tify the impact of different proportions of information induced by each representation.
With grid search and a step size of 0.05 we investigated the modality composition on
the weighted average of all evaluation sets. The optimal weights for (wT , wG, wV )
are: AVG (0.15, 0.05, 0.8), CONC (0.25, 0.15, 0.6), SVD (0.3, 0.05, 0.65), and PCA
(0.25, 0.05, 0.7)7. While some of the weighting schemes only include small propor-
tions of the KG representations, the extracted complementary information from KGs
still improves the performance in every approach significantly. In Fig. 2, you can see
the weighted average of Spearman’s rank correlation scores for different weightings
between normalized visual, textual, and KG representations. It clearly shows that the
combination of the three fused and weighted modalities produces better results than any
single modality8. Weighted combination methods substantially outperform uni- and bi-
modal embeddings while best results are obtained with SVD and PCA. Applying the

7 Due to high computational costs we omitted the autoencoder.
8 Otherwise the optimum (depicted with a black cross) would be in a corner (uni-modal) or edge

(bi-modal) of the triangle.
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Fig. 2: Averaged plots over all evaluation datasets for weighting with normalization. The
colorbar indicates Spearman’s rank correlation and the black cross marks the optimum.

dimension reduction methods SVD and PCA (100 dimensions) only on the initial uni-
modal embeddings did show improvements for the visual embeddings to an averaged
Spearman’s rank of 0.619 (SVD) and 0.639 (PCA) (weighted average). For comparison,
the best reported result for uni-modal models on SimLex-999 is [32] with Spearman’s
rank correlation of 0.563. The bi-modal approach [6] reported Spearman’s rank cor-
relations of 0.78 on MEN and 0.75 on WS-353 while their model covered 252 word
pairs of WS-353. Please note, our results on subsets of MEN, WS-353, SimLex-999,
and MTurk-771 are competitive but not directly comparable to the numbers reported
by state-of-the-art uni-modal approaches as they are evaluated on the complete datasets
and ours cannot. However, since this paper is about relative performance gains through
additional modalities we do not compete with, but are complementary to the state-of-
the-art uni- and bi-modal approaches.
For combinations via AVG and CONC as shown in Fig. 2a and 2b, we observe sim-
ilar behavior on all evaluation datasets in terms of optimal weights. SVD and PCA
exploit information from KG representations with very low weight, but the combined
representation of all three modalities is significantly better than a combination of only
two modalities. The best bi-modal combinations were AVG (0.15, 0, 0.85) with 0.709,
CONC (0.3, 0, 0.7) with 0.709, PCA (0.3, 0, 0.7) with 0.749, and SVD (0.3, 0, 0.7) with
0.759 Spearman’s rank correlation (weighted average).
The key finding is, that optimal weights always include all three modalities, so indeed
make use of visual, distributional, and relational knowledge. Further experiments with
different TransE model parameterizations revealed that this finding is not depending on
a specifically trained TransE embedding, but can be attributed to information extracted
from the knowledge graph. Thus, we can improve concept representations from other
modalities with complementary information encoded in Inception-V3, word2vec, and
TransE embeddings.

6.2 Noise Induced Errors vs. Complementary Information Gain

In a further step, we investigated the fusion effects in more detail. Every meaningful
representation encodes useful information which is defined by the model’s learning ob-
jective. Before combining models for a certain task, one has to verify that the model
encodes information for that specific task. Also, the representation quality for a cer-
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Fig. 3: Concatenation Effects

tain task might vary greatly. While complementary information of various models and
modalities can lead to an improvement when combined, a weak model for the specific
task might induce noise. Adding a model to a combined representation is only benefi-
cial if the gain through complementary information is greater than the information loss
induced by noise.

To illustrate these two effects, we evaluate representations with noisy models on the
MEN dataset. To isolate effects of noise induced errors, we combine two textual repre-
sentations after normalization and compute Spearman’s rank correlations. Pre-trained
word2vec representations served as the first high quality model. A second textual rep-
resentation was generated by artificially adding noise to the word2vec model. For that
reason, we added 100 dimensions with uniformly distributed random values and tuned
representation quality by scaling the distribution interval. Following this procedure, we
can observe the fusion effects between two concatenated representations with no com-
plementary information in Fig. 3a.

For showing the information gain of complementary information in Fig. 3b, we com-
bine Inception-V3 representations (w=0) with another noisy word2vec version (w=1).
Following the procedure above, we added noise to the word2vec representations and
scaled the distribution interval until performance was similar to Inception-V3. One can
observe the performance peak close to a weighting ratio of 1:1 between visual and tex-
tual representations which indicates that the visual and textual embeddings indeed hold
complementary information.

In Fig. 3c one can observe the superposition of both effects during concatenation. While
the visual model performs worse than the textual model on its own, the information gain
through complementary information is larger than the information loss due to noise.
Understanding the exact position of the maximum requires further research. Overall,
combining two representations via concatenation improves results, if the performance
gap between both models is not too large and both models encode complementary in-
formation (which is the case in our experiments).



6.3 Entity segmentation

Besides showing that a joint concept embedding comes closer to the human notion of
similarity, we can also demonstrate improvements in semantic entity segmentation. In
Fig. 4, we exemplarily show that the TriM1538 space is better suited for segmenting
entities when compared to the textual, visual, and KG embedding space. Entities rep-
resented with red crosses are land vehicles and various birds are plotted with blue plus
symbols. We computed the first two principal components of all three modalities and of
TriM1538. For TriM1538 we used normalization with weighted concatenation and the
respective weights are taken from our previous experiments on the evaluation datasets:
(wT , wG, wV ) = (0.25, 0.15, 0.6). In order to compare the first two principal compo-
nents of different embeddings, we normalize the PCA-vectors for each embedding to
unit length. This is important since we are interested in a relative separation while the
variance explained by the first two components might vary greatly between different
representations.
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Fig. 4: Segmentation results for birds (blue ’+’) and land vehicles (red ’×’).

All three single representations show the ability to separate the DBpedia categories
birds from land vehicles. In the textual domain, clustering of land vehicles is clearly
observable and birds are separated but do not show an equally condensed cluster. Visu-
ally, birds are clustered relatively close together, but vehicles are mixed into the cluster.
Similarly to text, the KG separates birds and land vehicles almost perfectly, but does not
create clean clusters. When combined in TriM1538, clustering and separation is better
than in all others modalities. Apparently, exploiting distributional, visual and relational
knowledge results in a clearer semantic entity segmentation.

6.4 Entity-Type Prediction

Finally, we show that established KG tasks can also benefit from embedding distribu-
tional semantic and visual attributes into relational knowledge. Entity-type prediction
is such a common KG completion task, similar to link prediction [20].
In order to test our TriM1538 embeddings in the context of entity-type prediction, we
use the following experimental setup: for a given KG entity e ∈ E and the set of avail-



able categories C, we predict to which of the categories c ∈ C the entity belongs (e.g.
http://dbpedia.org/page/Category:Mammals). We define the subgraph of DBpedia that
contains entities covered by TriM1538 and their relations as the TriM-KG and denote
the complete set of KG entities asE∗ = C∪E. Overall, TriM-KG contains 3220 triples
and 1955 entities of which 634 are categories and 1321 entities with multi-modal infor-
mation. Embeddings trained on TriM-KG are named locally trained embeddings, while
embeddings trained on the whole KG are referred to as globally trained. In the follow-
ing, we refer to entity, predicate and category vector embeddings with e, p and c.
We utilize the standard link prediction procedure of TransE as a baseline: For an entity
e of interest, we train TransE on TriM-KG and exclude all triples connecting that entity
to its category in C. The training parameters are the same as for the globally trained
TransE except for a reduced rank in order to circumvent overfitting. The translation
operation of TransE is then defined as the vector operation:

sim(e, p, c) = ‖c− (e+ p)‖2 (1)

Similar to [19], we compute sim(e, p, c) for all possible c ∈ C and get the rank of
the true triples by ignoring all other true triples to prevent distortion (since an entity
might be correctly related to multiple categories). As the similarity measure we use
the L2-norm within TransE and report mean ranks as well as the ratio of hits in the
top 10 (hits@10). As an additional benchmark, we compare the locally trained TransE
embeddings with the global TransE embeddings, for which the entity-category relations
(which have to be predicted) were present during training. Finally, we report results for
locally trained RESCAL embeddings with the same setup as for local TransE training
(for details see [19]).
Category memberships of the multi-modal entities can also be directly computed with
multi-modal embeddings of TriM1538. For this, we construct category embeddings
from entity embeddings related to that category: For a given category, we compute its
embedding with 1

N ·
∑N

i=1 ei for allN multi-modal embeddings ei related to category c.
Please note, for predicting category memberships of an entity, that specific entity is not
considered as being related to any category during the category construction process.
Thus, we obtain different category embeddings for each related entity. In TriM-KG, all
considered categories have connections to at least two different multi-modal entities to
ensure the construction of the category embedding. We name this procedure hierarchic
construction (HC) and use d = ‖e− c‖2 as the similarity measure.
Finally, we combine the entity-type prediction schemes from above. Since TransE per-
forms superior to RESCAL (see Table 3), we introduce an enrichment procedure for
TransE, which could similarly be adapted to RESCAL. We concatenate locally trained
TransE representations eloc with TriM1538 entities etri after normalizing the respective
embeddings to unit length. Similarly, we concatenate TransE category representations
with embeddings obtained by HC. With these extended embeddings eext = (eloc, etri),
cext = (cloc, ctri) we reformulate Eq. 1 to Eq. 2:

sim(eext, p, cext) = ‖(cloc, ctri)− (eloc + p, etri)‖2 (2)



Table 3: Results for type predictions with multi-modal embeddings on the right side.
Results for TransEloc enriched with multi-modal embeddings on the left side. TransE,
RESCAL, and Random at the bottom are baseline predictors without any multi-modal
information or enhanced construction scheme.

TransEloc + HC Hierarchic Construction
Train Test Train Test

mean rank hits@10 mean rank hits@10 mean rank hits@10 mean rank hits@10
PCA 10.401 0.828 10.251 0.824 12.274 0.863 14.680 0.869
SVD 14.310 0.749 14.637 0.716 17.424 0.762 19.420 0.762
CONC 14.086 0.765 13.696 0.742 17.254 0.807 19.595 0.806
word 14.297 0.763 14.215 0.741 24.157 0.784 28.107 0.764
visual 32.982 0.475 33.477 0.462 96.805 0.581 96.763 0.575
KG 15.609 0.744 14.009 0.730 33.129 0.671 30.732 0.699

Baselines
TransEloc 35.641 0.442 36.408 0.422
TransEglob 58.493 0.382 57.075 0.392
RESCALloc 116.640 0.286 115.275 0.261
Random 317.000 0.016 317.000 0.016

For the fusion techniques, the modality weights have to be optimized. To this end, we
create training and test sets with a 0.5:0.5 split of our data and optimize on the training
set. This resulted in (wT ,wG,wV ): PCA (0.2, 0.4, 0.4), SVD (0.45, 0.55, 0), and CONC
(0.4, 0.6, 0) for TransEloc+HC and PCA (0.2, 0.55, 0.25), SVD (0.4, 0.6, 0), and CONC
(0.4, 0.6, 0) for HC. As we have discussed in Sec. 6.2, weighting is task and model de-
pendent which implies that the usefulness of the different types of knowledge from the
respective modalities varies across different tasks. Further, the performance of a model,
which is enriched with multi-modal information, greatly impacts the optimal modality
composition. Thus, adapting the modality composition for new tasks is necessary.

Results for all methods are shown in Table 3. Consistent with observations in [19],
the TransE-based baseline performs better than RESCAL. Interestingly, the globally
trained TransE embeddings perform worse than the locally trained TransE, although
the links to be predicted were present during its training and it has more information
available. However, this is not surprising when comparing the size of the concept space
of DBpedia (7 · 106 concepts) with TriM-KG (1955 concepts).

The HC method even yields good results for entity type-predictions with uni-modal
embeddings as shown in Table 3. Visual attributes alone are obviously not suited for
predictions of type relations within the KG. Consistent with our observations in the
word similarity task, embeddings from different modalities incorporate complementary
information which can be exploited. With our modality fusion techniques, we achieve
substantially superior results compared to uni-modal embeddings. Further, PCA is the
best suited method for incorporating the sparse and rather noisy visual information in
this setup and shows a significant performance boost compared to CONC and SVD.

Combining TransEloc with HC improves the mean rank even further. Utilizing uni-
and multi-modal information enhances the predictions while PCA dominates all other



methods. Compared to the standard TransE predictions, we improve the mean rank by
255% with multi-modal enrichment via HC.

6.5 Key Findings

– All our empirical evidence suggests that each modality encodes complementing in-
formation that is conceptually different: text provides distributional, images visual
and KGs relational knowledge. Information encoded in the structure of embed-
dings can be useful for vastly different tasks and training objectives, even in other
domains, as long as concepts can be aligned.

– Complementing information can be embedded in a joint representation which is
closer to the human notion of similarity (see Sec. 6.1), as well as the human intu-
ition in entity segmentation tasks (see Sec. 6.3).

– When enriching KG embeddings with distributional and visual knowledge from
text and images, the performance of entity-type predictions is considerably im-
proved (see Sec. 6.4). This indicates that those types of knowledge are missing in
today’s KGs and KGs would greatly benefit if this could be integrated.

– The weighting of the influence for each modality before joining them across modal-
ities is crucial and task dependent since the type of knowledge needed for each
task varies. For improved performance, the positive effects created by the comple-
mentarity of information has to outweigh negative effects induced by noise in the
original embeddings (see Sec. 6.2).

7 Conclusion and Future Work

The intention of this research was to find out if essential types of information, like dis-
tributional and visual knowledge, are not sufficiently represented in today’s KGs (here
DBpedia). This was investigated by embedding knowledge from text corpora, image
collection and KG entities into a joint concept space. Comparing the performance of
the joint cross-modal representation to uni-modal representations on various bench-
mark tasks allowed a quantitative and qualitative assessment. Our proposed two-step
approach starts with pre-trained uni-modal concept representations created with estab-
lished embedding methods from computer vision, natural language processing and se-
mantic technologies. Next, the obtained concept embeddings were aligned across the
three modalities, normalization and weighting schemes were devised, before the embed-
dings were fused into one shared space. Our novel cross-modal concept representation
was evaluated in four sets of experiments by comparing it to uni-modal representations.
The main finding of this work is that the fused tri-modal embeddings reliably outper-
form uni- and bi-modal embeddings. This indicates that complementing information is
available in the three investigated content representations and that the types of knowl-
edge represented in text and images is conceptually different (distributional and visual)
to the knowledge represented in KGs (relational). On the one hand, the performance
gains were observed in tasks that optimize for the human notion of semantic similar-
ity. It appears that the more modalities are considered the closer the knowledge repre-



sentations come to a human-like perception. On the other hand, we investigated type-
prediction in KGs and outperformed existing uni-modal methods by 255%. Again, the
shared concept representation performed best when information from all three modali-
ties was included.

Our findings raise fundamental questions and open up a large number of future re-
search directions. First and foremost, it became obvious that knowledge graphs, and
likely any knowledge representation that aims to provide a holistic view on entities and
concepts, would benefit from integrating distributional and visual knowledge. Fusing
embeddings from multiple modalities is an initial step to achieve that. Our approach
is currently limited to the concept intersection of all modalities. While we do not need
aligned training data, the obtained multi-modal concept space is relatively small. The
most pressing issue for future work is to find ways to scale to a larger number of enti-
ties e.g. by including visual representations of tagged images, and to include relations.
Investigating approaches which harness multi-modal information for concepts outside
of this intersection is also part of our future research. Beyond knowledge representa-
tion and representation learning research, findings in this area would impact numerous
cross-disciplinary fields like sensory neuroscience, philosophy of perception, and mul-
timodality research.
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Simple Link Prediction. In: ICML 2016. vol. 48, pp. 2071–2080 (2016)


