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Abstract. A knowledge base stores descriptions of entities and their relation-
ships, often in the form of a very large RDF graph, such as DBpedia or Wikida-
ta. The entity relatedness problem refers to the question of computing the rela-
tionship paths that better capture the connectivity between a given entity pair. 
This paper describes a dataset created to support the evaluation of approaches 
that address the entity relatedness problem. The dataset covers two familiar 
domains, music and movies, and uses data available in IMDb and last.fm, 
which are popular reference datasets in these domains. The paper describes in 
detail how sets of entity pairs from each of these domains were selected and, for 
each entity pair, how a ranked list of relationship paths was obtained. 
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1 Introduction 

A Knowledge Base (KB) stores descriptions of entities and their relationships, often 
in the form of a very large RDF graph, such as DBpedia or Wikidata. A relationship 
path between an entity pair is a path in an RDF graph that connects the nodes that 
represent the entities. The entity relatedness problem refers to the question of compu-
ting the relationship paths that better describe the connectivity between a given entity 
pair.  

Several approaches [1, 2, 3, 4, 5, 6] have been proposed to address the entity relat-
edness problem. They apply a simple strategy: (1) search for relationship paths be-
tween the given entity pair – the larger the number of paths found, the stronger the 
connectivity between the entities is likely to be; and (2) sort the paths found and select 
the relevant ones. However, there currently is no adequate benchmarks to measure the 
effectiveness of such approaches. In some cases, expert users evaluate the results, and 
an apparently reliable method to judge the effectiveness of the approach is introduced. 
In others, a ground truth is created, which is a difficult and time-consuming task, and 



hardly the authors make the resources available. Thus, an open challenge is: How to 
evaluate and compare approaches that address the entity relatedness problem?  

The major contribution of this paper is a dataset created to support the evaluation 
of approaches that address the entity relatedness problem, which we refer to as the 
Entity Relatedness Test Dataset. The dataset contains entities and relationship paths 
extracted from DBpedia that pertain to two familiar domains, music and movies, and 
additional data extracted from the Internet Movie Database – IMDb and last.fm, 
which are popular reference datasets in these domains. The dataset and resources are 
available at [17, 18, 19, 20, 21]. 

The paper describes in detail the major steps and design decisions behind the con-
struction of the dataset. The first design decision was to select DBpedia as the refer-
ence knowledge base, from which we extracted relationships paths. The second de-
sign decision was to select the movies and music domains, which are backed up by 
two well-known datasets, IMDb and last.fm, from which we extracted reliable do-
main-specific knowledge. The dataset construction process involved three major 
steps. The first step consisted in the selection of a set of entity pairs from the music 
and movies domains. The second step referred to the extraction of a set of relationship 
paths from DBpedia, for each entity pair. The final step was to rank the paths, based 
on information extracted from IMDb and last.fm, and to select the top-k ones.  

This paper is structured as follows. Section 2 summarizes related work. Section 3 
introduces a generic strategy to find and rank relationship paths. Section 4 describes 
the construction of the dataset. Finally, Section 5 presents the conclusions. 

2 Related Work 

Finding and ranking relationship paths between a given entity pair in a 
knowledge base. RECAP [3], EXPLASS [4] and DBpedia Profiler [6] implemented 
path finding processes in an RDF knowledge base with the help of SPARQL queries 
[9]. REX [2] used two breadth-first searches on the RDF graph to enumerate relation-
ship paths between two entities, and considered the degree of a node as an activation 
criterion to prioritize nodes. Likewise, the work in [15] used the Jaccard similarity to 
compute an approximated minimal distance between the start and the end nodes, and 
to discover meaningful connection between the nodes. 
Evaluating relationship-path ranking in a knowledge base. Path-ranking measures 
were proposed in [3, 6, 8] to rank relationship paths in knowledge databases. Some 
approaches [3, 4, 6] evaluated relationship path rankings with the help of user exper-
iments. However, the evaluation methods did not clearly define the capabilities of the 
approaches analyzed. The work proposed in [10] argued that entity similarity heuris-
tics increase the relevance of the links between nodes. The authors compared and 
measured the effectiveness of different search strategies through user experiments. 

In this paper, we describe a dataset containing entity pairs and relationship paths in 
two entertainment domains, music and movies, to compare approaches that address 
the entity relatedness problem. 



3 A Generic Relationship Path Finding and Ranking Process  

An RDF graph G is a set of RDF triples of the form G={(s, p, o)} = (V, E), where the 
subject is an entity s	 ÎV, and it has property p	 ÎE whose value is an object o	 ÎV, 
which is either another entity. Particularly, p is seen as the edge that link the entities s	
and o in an RDF Graph. We will use the terms entity and node of G interchangeably.  

A relationship path in G between nodes w0 and wk in	 G is an expression of the 
form (w0, p1, w1, p2,	 w2, … ,	 pk-1,	 wk-1, pk,	 wk), where: k is the length of the path; wi 
is a node of G such that wi  and wj  are different, for 0 ≤ i ≠ j ≤ k; and either (wi, wi+1) 
or (wi+1, wi) are edges of G labeled with pi+1, for 0 ≤ i < k. Note that, since a relation-
ship path is an undirected path, but G is a directed graph, we allow either (wi, wi+1) or 
(wi+1, wi) to participate in the path. Alternatively, one may assume that each property 
p has an inverse, denoted “ˆp”, using SPARQL notation.  

To construct the dataset, we adopt a generic path finding and ranking process, 
briefly described as follow. 

The path finding algorithm receives an RDF graph G, two target entities, vstart and 
vend, a maximum distance k, and an activation function	 𝛕. It implements two breadth 
first searches (BFS), executed in parallel, to find paths in G between the target entities 
[7, 10, 14]. A BFS is started from each target entity (line 6). Subpaths are generated in 
the expansion step, and full paths are created when one of the target entities is 
reached, or the subpaths Sleft or Sright share a common entity (line 7). An activation 
function 𝛕 optimizes the traversal of G; only entities that comply with the activation 
criteria are considered. The output of the algorithm is a set of RDF paths between vstart 
and vend.  

The path ranking algorithm receives a set of paths Paths and a path ranking func-
tion 𝑓, and outputs a ranked subset of	Paths. 

The final algorithm calls the path finding algorithm and then the path ranking algo-
rithm. It outputs a ranked list of paths. 

 

 

 

PathFinding(G, vstart, vend, k,𝛕): Paths 
Input: an entity pair vstart and vend 

            a maximum distance k  
            an activation function 𝛕 
Output: a set of paths Paths that link  
            the given pair of entities 

1:   expanding  ⃪ 0, Paths ⃪Ø 
2:   side ⃪ 0, left ⃪ 0 , right ⃪ 1 
3:   Sleft  ⃪ {subpath(vstart, null, null)} 
4:   Sright  ⃪ { subpath(vend, null, null)} 
5:   repeat  
6:      Sside ⃪expand(Sside, 𝛕) 
7:      Paths ⃪Join(Sleft, Sright, vstart, vend,) 
8:      expanding  ⃪ expanding + 1 
9:      side = (side +1) mod 2 
10: until expanding <= k 
11: return Paths 

ReferencePathList(G, vstart, vend, k, 𝛕, 𝑓): Paths 
Input: an entity pair vstart and vend  
            a maximum distance k 
            an activation function 𝛕	
            a path ranking measure 𝑓 
Output: a set of paths Paths sorted 

1: Paths ⃪ PathFinding(G, vstart, vend, k, 𝛕) 
2: Paths ⃪ PathRanking(Paths, 𝑓) 
3: return Paths 



4 Constructing the Entity Relatedness Test Dataset 

The construction of the Entity Relatedness Test Dataset poses three major challenges: 
(1) how to select entity pairs; (2) how to find relationship paths for the entity pairs 
selected; and (3) how to rank the relationship paths. We addressed these challenges in 
the movies and music domains.  
The dataset and resource are available at [17, 18, 19, 20, 21]. Examples and a more 
detailed evaluation of how use this dataset can be found in [16]. 

4.1 Selecting Entity Pairs 

We focused on best-selling music artists1, in the music domain, and on famous classic 
actors and actresses2, in the movies domain. We considered the box office sales and 
the actor’s fame as relevance criteria for the music and movies domains. 

After selecting a list of entities from each of these two domains, we submitted each 
entity to Google Search to select a set of related entities. Then, for the possible entity 
pair, we computed their semantic connectivity score3 [11] in DBpedia, with maximum 
length 4, to discover entity pairs with high connectivity. The maximum path length 
between two entities was set to 4, since it is a value backed up by the small world [12] 
phenomenon, which says that a pair of nodes is separated by a small number of con-
nections, and since it was confirmed in previous experiments [15]. 

4.2 Finding Relationship Paths 

For each of the 40 entity pairs of our dataset, we used the path finding algorithm, 
described in Section 3 (and introduced in [16]), to create 40 sets, each with 50 rela-
tionship paths. We applied the algorithm to the RDF graph of DBpedia, and used an 
activation function that prioritizes entities which are instances of classes of the DBpe-
dia ontology that pertain to the domain in question. The classes or types of an entity in 
DBpedia are defined through the rdf:type property. The classes of the DBpedia ontolo-
gy in music and movie domains are defined in Tables 7 and 8 in Section 5 at [16]. The 
entities that belong to previous classes are considered in the generations of relation-
ship paths in DBpedia. The path finding algorithm uses as single activation function 
the classes of the DBpedia ontology in the domain concerned, the expansion process 
analyses the types of each entity, if an entity belongs to a class of the ontology do-
main, then it is prioritized to generate relationship paths. 

To define which classes of the DBpedia ontology pertain to each of the domains in 
question, we adopted as reference the Music Ontology, for the music domain, and the 
Movie Ontology, for the movies domain. Then, we manually selected classes of the 
DBpedia ontology that could be paired with the major classes of each reference ontol-
ogy.  

                                                             
1 https://en.wikipedia.org/wiki/List_of_best-selling_music_artists 
2 http://www.IMDb.com/list/ls000035399/ 
3 http://lod2.inf.puc-rio.br/scs/SemConnectivities 



4.3 Mapping Entities 

As a preparation to the path ranking process, we mapped entities in DBpedia to enti-
ties in the reference datasets, as explained in this section.  
Music domain. To map DBpedia entities to last.fm, we used the keyword search API 
of last.fm4: api:artist.getInfo, api:album.getInfo and	api:track.getInfo.  

We first determined whether the entity represented an artist or a musical content by 
analyzing the rdf:type	 property, as in [6]. For example, the entity dbr:Michael_Jackson 
has type	 dbo:Artist. If the entity represented an artist, we extracted keywords from its 
URI (such as “Michael + Jackson”) and submitted them to api:artist.getInfo5 to search for 
the entity. If the search was successful, we had an exact mapping, otherwise we used 
other keywords. It the entity represented musical content (an album, song or single), 
we had to identify its main artist in DBpedia, through the property dbp:artist. For ex-
ample, the main artist of dbr:Thriller_(album) is	 dbr:Michael_Jackson. If the entity repre-
sented a musical album, we called api:album.getInfo6 to search for the entity. Similarly, 
it the entity represented a song or a single, we called api:track.getInfo. 

Movies domain. In DBpedia, we used the property rdf:type to decide if an entity was a 
movie. In any other case, we considered the entity as a participant of a movie. We 
identified the immediate type of an entity using the method proposed in [6]. 

To map DBpedia entities to IMDb, we imported the IMDb7 database to a local 
PostgreSQL database and re-created data about names, movies and casts (people who 
worked in a movie). Usually, the entities in DBpedia have an auto description in the 
URI. For example, the URL dbr:Cleopatra_(1963_film) indicates the name of a movie, 
“Cleopatra”, and its release year, “1963”. We used this basic description to find the 
same entity in IMDb through classic SQL queries.	 For those cases where the queries 
returned more than one result, we used the Levenshtein Distance [13] to choose the 
IMDb entity most similar to the DBpedia entity.  

4.4 Ranking the Relationship paths  

We ranked the paths in each of the 40 sets using semantic information extracted from 
IMDb and last.fm to compute entity ratings, and information extracted from DBpedia 
to compute property relevance scores.  

To obtain the ranked lists, we first computed the score of each path π as the aver-
age of the rating of the entities involved in the path. Recall that π is a path in the 
DBpedia graph. Each entity e used in π was first mapped to an equivalent entity e’ in 
IMDb or last.fm, as explained in Section 4.3; the rating of e’ was computed from data 
in IMDb or last.fm, as described below, and assigned to e. Finally, the score of π was 
computed as the average of the ratings of the entities that occur in π. 

                                                             
4 http://www.last.fm/api 
5  api?method=artist.getinfo&artist=Michael+Jackson 
6  api?method=album.getInfo&artist=Michael+Jackson&album=Thriller 
7 ftp://ftp.fu-berlin.de/pub/misc/movies/database/ 



For each entity pair, we ranked the paths using their scores and retained the top 50 
paths. However, since the path score ignores the relevance of the properties, paths that 
involve the same entities will have the same score. As a further step, we inspected 
each ranked list and used the relevance scores of the properties, computed in DBpe-
dia, to help rank the paths with the same entities.  

This ranking process is justified for two basic reasons. On one hand, we intended 
to create a dataset that would help evaluate approaches that address the entity related-
ness problem, which typically involve a path ranking measure. Therefore, it would not 
be reasonable to adopt a path ranking measure from the literature (which would create 
ranked lists biased to that measure). On the other hand, it would be infeasible to man-
ually rank the relationship paths that connect two entities (in DBpedia), whose num-
ber is typically very high [16]. Hence, we opted to: (1) select two domains – music 
and movies – for which specialized data were available; (2) filter the paths in DBpe-
dia so that they traverse only entities in each of these domains; (3) use specialized 
domain data to pre-rank the paths found; (4) manually inspect and sanction the pre-
ranking, which proved to be a feasible task. The computation of entity ratings and 
property relevance scores is detailed below. 

Entity rating in the music domain. In last.fm, each artist and musical content has 
two relevance scores: the listeners score and the play count score. This information 
can be accessed through the search API of last.fm. The listeners score represents the 
number of different users who listen a song, and the play count score is the number of 
times a person listens to a song. An album, depending on the number of songs, re-
ceives as play count score (or listener score) the sum of the play count scores (or lis-
teners scores) of the songs in the album. Similarly, an artist receives a play count 
score and a listener score. We used the play count score to create an entity rating in 
the music domain; if the entity is not identified in the mapping, we assigned a zero 
score.  

Entity rating in the movies domain. IMDb publishes user-generated ratings for 
movies; an IMDb registered user can cast a vote (from 1 to 10) for every released 
movie in the database. Users can vote as many times as they want, but each vote will 
overwrite the previous one. In the case of people (actors, directors, writers) involved 
in a movie, we computed the average rating of the movies where the person partici-
pated to generate his/her rating. We imported the movies ratings to our local database 
and, with the table Cast, we related movies and actors to compute the artist rating. 
Again, if the entity is not identified in the mapping, we assign a zero score. 

Property relevance score in DBpedia. We used the inverse triple frequency (ITF) 
[3] as the property relevance score, defined as 𝑖𝑡𝑓 𝑝, 𝐺 = 𝑙𝑜𝑔 H

HI
, where 𝐺  is the 

number of triples in a knowledge base  and 𝐺J  is the number of triples in G whose 
property is p.  

Example: Consider the following paths of the DBpedia RDF graph:  
P1. Elizabeth_Taylor ^producer The_Taming_of_the_Shrew starring Richard_Burton 

P2. Elizabeth_Taylor ^starring The_Taming_of_the_Shrew starring Richard_Burton 



where “Elizabeth_Taylor”, “Richard_Burton” and “The_Taming_of_the_Shrew” actually 
are abbreviations for the URIs of these DBpedia entities, and likewise for the proper-
ties. 

The first step is to compute the entity rating of these entities using information 
from IMDb, which involves finding these DBpedia entities in IMDb. The path scores 
are computed as the average of the rating of the entities in the path. Since these two 
paths involve the same entities, they will have the same score. The second step is then 
to compute the ITF in DBpedia of the properties “^starring” and “^producer” to help 
disambiguate the ranking. Since “^producer” is less frequent in DBpedia than 
“^starring”, it has a higher ITF. Path P1 should then be ranked before P2. However, this 
is subjected to manual inspection to confirm the preference of P1 over P2, which was 
the final decision in this case, on the grounds that P1 is perhaps more informative to 
the user than P2. 

5 Conclusions and Future Work 

In this paper, we described a dataset created to support the evaluation of approaches 
that address the entity relatedness problem. The dataset contains entity pairs in the 
movies and music domains, and lists of relationship paths in DBpedia, ranked based 
on information about their entities found in IMDb and last.fm, and on information 
about their properties computed from DBpedia. 

The dataset can be used to test activation functions, based on entity similarity 
measures, and path ranking measures directly on the DBpedia graph. To use the da-
taset in the context of another knowledge base K, one should remap the entities and 
properties used in our reference dataset to K, much as we described in Section 4.  

The construction process can be replicated to other domains where, intuitively: (1) 
entities with high reputation help select “meaningful” paths; (2) less frequent proper-
ties, or more discriminatory properties, also help select “meaningful” paths. In fact, 
the construction process described in Section 4 is as interesting as the resulting da-
taset. Therefore, as future work, we plan to focus on other domains, such as Sports, 
Video Games and Academic Publication, to increase the size of the Entity Related-
ness Test Dataset described in the paper.  
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