Neural Embeddings for Populated Geonames
Locations

Mayank Kejriwal and Pedro Szekely

Information Sciences Institute
{kejriwal, pszekely}@isi.edu

Abstract. The application of neural embedding algorithms (based on
architectures like skip-grams) to large knowledge bases like Wikipedia
and the Google News Corpus has tremendously benefited multiple com-
munities in applications as diverse as sentiment analysis, named entity
recognition and text classification. In this paper, we present a simi-
lar resource for geospatial applications. We systematically construct a
weighted network that spans all populated places in Geonames. Using
a network embedding algorithm that was recently found to achieve ex-
cellent results and is based on the skip-gram model, we embed each
populated place into a 100-dimensional vector space, in a similar vein as
the GloVe embeddings released for Wikipedia. We demonstrate poten-
tial applications of this dataset resource, which we release under a public
license.

Resource Type. Datasets generated using novel methods/algorithms.
Github. https://github.com/mayankkejriwal/Geonames-embeddings
Figshare/DOI. https://doi.org/10.6084/m9.figshare.5248120
License. MIT License

Keywords: Geonames, Geospatial applications, DeepWalk, Neural Em-
beddings, Skip-gram, Word2Vec, Deep Learning

1 Introduction

In recent years, embedding architectures based on neural networks (i.e. skip-
grams and continuous bag of words) and matrix optimization have been success-
fully applied to a variety of large natural language datasets [8], [7]. Once released
publicly, ‘word embeddings’ on common corpora like Wikipedia and the Google
News Corpus have found widespread use in many independent applications, es-
pecially in Natural Language Processing (NLP) [3].

In the Semantic Web, RDF is the prevalent data model for publishing facts
as triples. Similar to Wikipedia in the NLP community, some RDF datasets,
such as DBpedia and Geonames [1], [12], cover large domains and are useful for
a variety of distant supervision applications [4]. For example, Geonames, which
is a large, comprehensive knowledge base of geographical locations, both popu-
lated and unpopulated, and at different administrative levels (e.g., city, country),
is useful both in information extraction and entity linking. With the advent of



2 Mayank Kejriwal and Pedro Szekely

high-performance graph embedding and network embedding algorithms [9], there
is an opportunity to use these algorithms to embed useful knowledge bases into
a vector space. For example, the RDF2Vec system was used to embed nodes in
Wikidata and DBpedia; these embeddings were subsequently used in node classi-
fication problems and were also independently released [10]. The general method
in RDF2Vec is to first convert the knowledge graph into an unweighted network
by ignoring all property label information, such that nodes are URIs (literals
are ignored). An embedding algorithm designed for networks, for which there
are several candidates in the literature [9], [10], is then used on this unweighted
network.

vy
N O R T H Camggmn
ez D/KOTA
jeulah
J g .. Jamestown Valleg City
New §alem Bis Oarck teoee W o

Cannon Ball

Fig. 1. An illustration of model results given a collective query of three cities (in red);
the result (the town of Regan; name not shown on map) returned by the embedding
model is the black pin. The embeddings reflect spatial proximity and can be used as
feature vectors for the corresponding location entities in a machine learning pipeline.

While RDF2Vec and other algorithms like it have been shown to work well
for cross-domain data with rich contexts, their application to domain-specific,
and more specifically, geolocation datasets has not been shown. There are two
problems with a straightforward embedding approach, along the lines of what
was described in the previous paragraph. First, not all nodes in Geonames are
equally important. Many applications are concerned with extracting locations
(e.g., from Twitter) where people reside. This class of locations is special enough
that Geonames has dedicated a special ‘feature code’ to distinguish between
populated and unpopulated geolocations. A second, more serious, problem is
that the literals in Geonames are extremely useful, and should not be ignored,
as in RDF2Vec. Latitudes and longitudes are available in Geonames, and can
be used for tasks such as visualization and spatial indexing. Since latitudes
and longitudes are real-valued and have specific geolocation semantics, simply
using them as nodes (similar to URI nodes) is also problematic. Hypothetically,
such a network would have two places that lie on opposite sides of the globe



Neural Embeddings for Populated Geonames Locations 3

(but share the latitude) separated by a path of 2 edges and 1 node (the shared
latitude). Clearly, we have to use the latitude and longitude both during network
construction, as well as during network embedding, for meaningful (i.e. in the
sense of preserving spatial proximity in the vector space) contezts to be used as
inputs in the neural embedding algorithm.

In this paper, we present a methodology for constructing a directed, weighted,
almost weakly connected graph where the nodes are populated locations and the
edge weight between two nodes (if the edge exists) approximates the geodesic
distance between the two nodes. We embed the nodes into a unit hypersphere in
a latent space such that a simple dot product similarity approximates the spatial
proximity between the nodes (Figure 1). We train the embeddings by adapting
an unweighted network embedding algorithm, DeepWalk, that utilizes the skip-
gram neural architecture and has yielded excellent performance in recent years.
Embeddings are independently trained for latent spaces with 100-dimensions,
and all embeddings are publicly released under an open license. To maximize
utility, we serialize our files in an exchangeable, rather than software-dependent,
format (JSON lines). Our vectors can be used without any knowledge of embed-
ding algorithms and software packages. We illustrate at least two applications
for which these vectors may be employed.

Table 1. Datasets and resources released in this work.

Dataset Description

Weighted Directed Network |Represented as adjacency list (described in Section 2)

Random Walk Corpus Set of random walks on which weighted DeepWalk is
executed (described in Section 3)

Embeddings Split into multiple JSON lines files to facilitate easy
access and download (described in Section 3)

Samples For easy viewing in browser

Motivations. The primary purpose for neural embeddings (on graph data) is
automatic context-based construction of feature vectors in a dense latent space.
These feature vectors can then be used in a variety of tasks, especially those
concerning distant supervision [4], usually in combination with external data. In
Section 4, we briefly mention at least two such applications, including toponym
resolution and anomaly detection [4], [2]. More generally, any application that
seeks to use Geonames via distant supervision, and there are several such applica-
tions in the literature, can potentially avail of our dataset for improved machine
learning performance (through feature enrichment). It is also possible to use the
method and constructed graph in this paper for embedding ‘higher’ order geolo-
cations like states and countries, which are not amenable to simple ‘coordinate’
embeddings in a geographical space, as they are not describable as points at
any reasonable granularity. Finally, although we do not explore it herein, the
embeddings can be adapted for spatial reasoning tasks using only efficient dot
product computations in the latent vector space. We argue that all of these are



4 Mayank Kejriwal and Pedro Szekely

good motivations for formally publishing the datasets as citeable resources for
public use. Table 1 enumerates the datasets being released with this paper. All
resources are publicly published in Github under a friendly license (MIT). We
expect to keep improving, adding to, and maintaining, the embeddings in the
near future.

2 Constructing Weighted Geonames Graph

A principled approach to embeddings requires a principled approach to graph
construction. For reasons explained earlier in the introduction, a naive embed-
ding of the Geonames graph (i.e. not taking latitude-longitude information into
account, or taking them into account only trivially) has several associated prob-
lems. We propose a novel method for constructing a weighted, almost weakly
connected Geonames graph from the raw Geonames knowledge base. The 4.4
million nodes in this graph comprise the set of geolocations in the Geonames
knowledge base with an ID and that are identified by the following Geonames
feature codes: [PPL’, ‘PPLA’, ‘PPLA2’, ‘PPLA3’, ‘PPLA4’, ‘PPLC’, ‘PPLCH’,
‘PPLF’, ‘PPLG’, ‘PPLH’, ‘PPLL’, ‘PPLQ’, ‘PPLR’, ‘PPLS’, ‘PPLW’, ‘PPLX’,
‘STLMT’]. Each of these feature codes is fully documented on the following
Geonames page'; for example, PPL stands for populated place and is described
in Geonames as ‘a city, town, village, or other agglomeration of buildings where
people live and work’.

The next step in the construction concerns the edges and also the edge
weights. For the graph to be spatially meaningful, we calculate edge weights
using the following principle: given that a directed edge e = (u,v) between two
nodes u and v exists, the weight w(e) of e is given by the geodesic distance®
between u and wv.

There is a well-known formula, called the haversine equation, in the geospatial
and spherical trigonometry literature for calculating such a great-circle distance
between two locations, using only the latitudes and longitudes of the locations
[11]. We state the formula as follows:

a = sin*(Ap/2) + cospy.pa.sin*(AN/2) (1)
¢ = 2.atan2(v/a, /(1 — a)) (2)
dist = R.c (3)

where ¢ is latitude, A is longitude, R is earth’s radius (mean radius = 6,371 km),
dist is the requested distance (in units of R), and all angles are in radians.

An efficiency concern immediately arises if we attempt to construct the com-
plete graph with 4.4 million x4.4 million = 19 trillion edges, and call a function

! http://www.geonames.org/export/codes.html
2 This is the shortest (‘as-the-crow-flies’) distance between the locations on the phys-
ical (i.e. curved) surface of the planet.



Neural Embeddings for Populated Geonames Locations 5

calculating dist trillions of times. For the purposes of the subsequent neural em-
bedding, we devised a reasonable, much sparser approximation as follows. First,
we compiled two sorted lists of locations, where one list is sorted according to
latitude and one list, according to longitude. We slide a window of size 50 over
each of these sorted lists, and construct a weighted directed edge between the
first entity and all other entities in this window, if an edge doesn’t already exist.
Furthermore, to ensure that all embeddings represent meaningful and relevant
locations, we perform an extra round of pruning by checking the population of
each of the two locations incident on the edge, and only keeping those edges
where the populations of both edges are non-zero (precluding the inclusion of
towns or cities that do not currently exist). This results in a graph with 357,550
nodes?, each of which has a non-zero population and also has a latitude-longitude
annotation.

The reason why we construct a directed, not undirected, network is to ensure
that random walks (described subsequently) do not oscillate back and forth. That
is, a random walk initiated from a given node will always be forced to move in
a north-south or east-west direction at each step of the walk.

The final graph Gyy is stored as a weighted adjacency list, and comprises of
357,550 nodes and 8,997,845 edges. There are three important advantages that
the construction above confers, in addition to preventing localized random walk
oscillations. First, it yields an almost weakly connected* graph because of the
sliding window methodology and a large window size of 50. Second, the graph
is almost regular: neither the in-degree nor out-degree of a node varies by much
and tends to be well below 50 (the original window size) because of the outsize
presence of nodes with population 0. Third, we ensure that the weights play a
meaningful role in determining the latent space embedding, as we next describe.

3 Latent Space Embedding of Weighted Graph

One of the early (though not the first) successful algorithms to use neural net-
works for latent space embeddings was word2vec [7]. Word2vec can be trained
using two different neural models (and both models admit a range of sub-
configurations), namely, continuous bag of words (CBOW) and skip-gram. The
latter has emerged as the more powerful model, especially with negative sam-
pling. The model takes as input a set of sequences (typically, of words) and em-
beds each item in the sequence in a d-dimensional vector space, with d specified
as a model hyperparameter. Trained on large corpora like Wikipedia, skip-gram
word2vec was found to yield remarkably intuitive results, especially in role anal-
ogy tasks e.g., vec(king)-vec(man)+vec(woman) was found to be close to the
vector representation for queen [7].

3 This is less than 10% of the almost weakly connected graph originally constructed
from the raw Geonames knowledge base (described in the first paragraph).

4 The graph is not guaranteed to be weakly connected because of the zero-population
pruning.



6 Mayank Kejriwal and Pedro Szekely

Because of the success of the basic model, originally conceived only for nat-
ural language sentence sequences, researchers were quick to apply it to graphs.
The DeepWalk embedding model is one example of this approach [9]. Given an
unweighted network, DeepWalk initiates a set of truncated random walks from
each node. Since each random walk is a sequence, it is analogous to a sentence
in natural language. The union of all sets of random walks is akin to a corpus of
sequences, and each element in each sequence corresponds to a node. Thus, the
result of running DeepWalk on a network (whether directed or undirected) is a
node embedding in the skip-gram latent space.

3.1 Weighted DeepWalk

In its original formulation, DeepWalk was designed for unweighted networks.
Namely, for each node, a set of p k-step random walks were initiated, k and p
both being constants. That is, every neighbor of node n had equal probability
of being the next step in a random walk initiated from n. Each random walk
sequence, being like a sentence in natural language, is input to the skip-gram
word2vec neural model either in batch or incremental mode.

In contrast, since we would like to ensure that spatially proximate nodes in
our weighted network are over-sampled when doing a random walk (thus all edges
and neighbors should not be equal), we sample the steps according to the local
edge probability distribution, which may not be uniform any longer due to the
weights. We derive a valid probability distribution over the neighbors of node n
as follows. For a node m that is a neighbor of n, let the weight of the edge (n, m)
be denoted by w. We compute a new dampened weight w' = maxz(1.0/In(w), e)
where In is the natural log. We [1-normalize (divide by the sum) the dampened
weight distribution to achieve a valid probability distribution. Note that all
probabilities in the distribution are guaranteed to be non-zero due to the soft
lower bound.

More generally, the dampened weight formula is designed with two principles
in mind: (1) it is inversely proportional to the dampened distance, ensuring
that sampling during the random walks is not overwhelmed by only the closest
locations; (2) it prevents underflow numerical computations both by setting
a lower bound and through the natural log (we always divide by a number
that grows much slower than linearly). Because of the soft lower bound and
the almost-weak connectivity, we also increase the chances that a random walk
starting from a random node, if executed long enough, will eventually reach
‘the other side of the planet’. This last property is important statistically, as it
(stochastically) ensures broad coverage.

Although the distributions are not necessarily uniform, the sampling process
for each random walk is Markovian, similar to ordinary random walks. That
is, the history of each walk does not factor into the sampling of the next node
from a given node. We set p to 5 and k£ to 10. Other parameters can also be
tried using our original data files; in the context of an actual application, the
parameter values will differ depending on application performance on a held-out
validation dataset. However, as the case study in Figure 1 illustrates, even with



Neural Embeddings for Populated Geonames Locations 7

such minimal sampling, spatial proximity is maintained in the vector space.
Furthermore, because the sampling rate is low, the process of generating the
random walk corpora is extremely efficient, and could be accomplished in mem-
ory on a serial machine. Once a corpus of random walks has been sampled, we
embed all nodes into a latent 100-dimensional vector space using skip-gram.
Each vector is 12-normalized and lies on the unit-radius 100-dimensional hy-
persphere. We serialize the output in JSON lines, such that each JSON is a
simple key-value pair, where the key represents a node in the graph, and the
value is a 100-dimensional real-valued vector. Rather than use the Geonames ID
for representing each key, we compose a mnemonic representation of the form
{human-readable-name}_{ Geonames-ID}, so that a human can manually inspect
results.

It is important to note the rationale between having 100-dimensional em-
beddings, since the latitude-longitude embeddings are only 2-dimensional. The
reason for setting the dimensionality parameter so high is that we are ‘com-
pressing’ each vector into a unit hypersphere (a dense latent space), and expect
the cosine similarity to approximate the role of the haversine similarity in the
lat-long embedding space. While we set the dimensionality to be 100, lower (or
higher) values can also be tried by retraining the embeddings on the files we
have published in the GitHub repository. In previous work, setting the dimen-
sionality between 20-200 was found to generally achieve optimal results, with
minor variance.

Finally, because each line in the JSON lines format is a vector, vectors (i.e.
JSONS) can be sampled independently of each other; also, a per-line iterator can
be used for reading vectors into memory (hence, iterator parallelism, amenable
to both shared-nothing and shared-memory architectures, can be used). Further-
more, because of the mnemonics we have used, in addition to using the explicit
ID in identifying a location, a human can inspect results without necessarily
having to always do ID lookups.

4 Applications and Extensions

As described earlier as motivation, the primary application of geolocation em-
beddings is in expressing a location as a feature vector e.g., in a downstream
machine learning system. One application where we are exploring these embed-
dings is toponym resolution [4]. For example, when geotagging Web documents,
one needs to extract geolocations from the Web document [6]. At least two prob-
lems tend to arise, especially in difficult domains (like human trafficking) that
are of investigative importance: first, geolocations can be extremely ambiguous.
For example, a geo-extraction ‘Melbourne’ can refer to the city in Australia, but
may also be referring to the city in Florida. However, if there is some other clue
(e.g., phrases like ‘sunshine state’ or ‘down under’), the resolution can still be
effected by combining such phrasal features (e.g., using bag-of-words) with each
candidate geolocation embedding and picking the location with the higher pos-
terior probability. A machine learning model, in a training phase, would learn to



8 Mayank Kejriwal and Pedro Szekely

associate certain words (like ‘sunshine’ and ‘Florida’) more strongly with Florida
geolocation embeddings than otherwise.

Another application is anomaly detection [2], which arises when some other
entity type (e.g., a name like Charlotte) gets extracted as a geolocation (the city
in North Carolina). Assuming that a true set of geolocations also got extracted
(e.g., locations in California), the embeddings can be used to detect the ‘anoma-
lous’ location, in this case, Charlotte. We have already published the collective
power of geolocation extractions in a recent work [5].

We are also exploring extensions of the embeddings, mainly via alternate
constructions of the weighted graph. For example, one could forge an edge be-
tween two nodes if they have textual similarity between their Wikipedia pages.
This would ensure that locations that are described in similar ways would have
strong edge connections. One could even combine vectors derived from several
such graphs for expressive geoenrichment.

References

1. C. Bigzer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hell-
mann. Dbpedia-a crystallization point for the web of data. Web Semantics: science,
services and agents on the world wide web, 7(3):154-165, 2009.

2. V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM
computing surveys (CSUR), 41(3):15, 2009.

3. R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.
Natural language processing (almost) from scratch. Journal of Machine Learning
Research, 12(Aug):2493-2537, 2011.

4. G. DeLozier, J. Baldridge, and L. London. Gazetteer-independent toponym reso-
lution using geographic word profiles. In AAAI pages 2382-2388, 2015.

5. R. Kapoor, M. Kejriwal, and P. Szekely. Using contexts and constraints
for improved geotagging of human trafficking webpages. arXiv preprint
arXiv:1704.05569, 2017.

6. M. Kejriwal and P. Szekely. Information extraction in illicit web domains. In
Proceedings of the 26th International Conference on World Wide Web, pages 997—
1006. International World Wide Web Conferences Steering Committee, 2017.

7. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111-3119, 2013.

8. J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532-1543, 2014.

9. B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 701-710. ACM, 2014.

10. P. Ristoski and H. Paulheim. Rdf2vec: Rdf graph embeddings for data mining. In
International Semantic Web Conference, pages 498-514. Springer, 2016.

11. C. C. Robusto. The cosine-haversine formula. The American Mathematical
Monthly, 64(1):38-40, 1957.

12. M. Wick. Geonames. GeoNames Geographical Database, 2011.



