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Abstract. A growing number of highly optimized reasoning algorithms
have been developed to allow inference tasks on expressive ontology lan-
guages such as OWL(DL). Nevertheless, there is broad agreement that
a reasoner could be optimized for some, but not all the ontologies. This
particular fact makes it hard to select the best performing reasoner to
handle a given ontology, especially for novice users. In this paper, we
present a novel method to support the selection ontology reasoners. Our
method generates a recommendation in the form of reasoner ranking. The
efficiency as well as the correctness are our main ranking criteria. Our
solution combines and adjusts multi-label classification and multi-target
regression techniques. A large collection of ontologies and 10 well-known
reasoners are studied. The experimental results show that the proposed
method performs significantly better than several state-of-the-art rank-
ing solutions. Furthermore, it proves that our introduced ranking method
could effectively be evolved to a competitive meta-reasoner.
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1 Introduction

A growing number of highly optimized ontology reasoners [10] have been devel-
oped to allow inference tasks on expressive ontology languages such as OWL(DL)
[6]. Nevertheless, it is well accepted that a reasoner could be optimized for some
but not all the ontologies. Indeed, the respective authors of [18, 5] have outlined
that, often in practice, reasoners tend to exhibit unpredictable behaviours when
dealing with real world ontologies. They noticed that the reasoner performances
can considerably vary across the ontologies, even when the size or/and the ex-
pressivity of these ones are fixed. Furthermore, Gardiner et al. [4] and more
recently Lee et al. [9] pinpointed out that reasoners may disagree over inferences
or query answers, computed from the same input ontology. All of the aforemen-
tioned authors offered different explanations of these phenomena: bottlenecks in
the ontology design [5]; interactions between reasoning optimisation techniques
[4]; or even reasoner implementation bugs [9]. Given all of these findings, it is
obvious that for a typical OWL user, deciding the most performing reasoner to
handle a given ontology is not a trivial task.
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Recently, we conducted a preliminary study [2] on designing a system to
support users in reasoner selection task for the classification of OWL ontologies.
The proposed system, called RakSOR, automatically ranks a set of candidate
reasoners based on their predicted robustness. The ranked list gathers relevant
reasoners, those capable to achieve the reasoning task within a fixed time limit
and to deliver correct results. It also includes the irrelevant ones. Hence, a user
could be informed about what reasoners to select and what to avoid. To put
this specification into practice, we defined a set of preference rules based on
bucket order principal [3], a special case of partial order. Our method showed
good ranking prediction quality comparing to our baseline method1. Neverthe-
less, we admit that the prediction accuracy of the RakSOR algorithm depends
heavily on the accuracy of the robustness predictive model of each reasoner.
This dependency makes it difficult to further improve the effectiveness of its re-
sults. Furthermore, the learning process of the various predictive models is time
consuming and highly complex. Besides, we only studied reasoners specifically
tuned for the OWL 2 DL profile.

Motivated enough, in this paper, we present a novel accuracy boosted solution
for reasoner automatic selection, based on multi-label learning paradigm [16, 20].
We also demonstrate that this method could be used as the core component of
a very competitive meta-reasoner. The novel solution, called Multi-RakSOR,
uses reasoner efficiency and result correctness as main ranking criteria. In ad-
dition to our previous reasoner preference rules and order principal [2], Multi-
RakSOR considers the OWL profile of the input ontology. Indeed, it supports
both OWL 2 DL and EL profiles. Subsequently, it has two sets of alternative
reasoners, i.e. EL specialised and DL fully fledged ones. Multi-RakSOR maps the
feature values describing an input ontology into a complete ranking over a set
of alternative reasoners. It also indicates the expected relevance of each of the
ranked reasoners. To achieve this end, the introduced ranking solution combines,
in a consistent way, multi-label classification [20] and multi-target regression [14]
techniques. Moreover, Multi-RakSOR is capable to swiftly compute the ontology
features and the ranking predictions. This has particularly incited us to design
of a novel meta-reasoner[8] based on our ranking solution.

The main contributions of this paper can be summarized as follows:

1. The design and the implementation of a novel multi-label based solution for
the multi-criteria ranking of ontology reasoners.

2. The planning of a large scale experimental evaluations that covers 10 well
known reasoners and 1954 unique ontologies, collected from the corpus of
the latest Ontology Reasoner Evaluation Workshop (ORE’2015) [13].

3. The comparison of several multi-label learning algorithms. Results shows
that Multi-RakSOR performs significantly better in terms of ranking and
relevance prediction quality, comparing to the state-of-the-art multi-label
solutions.

1 It is a trivial solution which outputs the same reasoner ranking regardless of the
ontology under study.
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4. The preliminary study of a meta-reasoner based on multi-label ranking. Eval-
uation results proves that it can outperform all of the studied reasoners in
terms of result correctness. It also highlights that, at average, the meta-
reasoner can significantly boost the reasoning efficiency on DL ontologies,
but it is less capable on EL ontologies.

2 Background and related works

We recall some multi-label learning key notions. Then, we review known multi-
label based works for algorithm selection. Finally, we describe the ontology fea-
tures employed in our learning process.

2.1 Key notions of multi-label learning paradigm

In the multi-label learning context [16, 20, 14], each input instance is character-
ized by a d -dimensional feature vector X(i) = (xi1, x

i
2, . . . , x

i
d), associated with a

set of m output labels Y(i) = (yi1, y
i
2, . . . , y

i
m). Let X be the space domain of the

input features and let Y be the domain of the output labels, also called the target
variables space. The task of multi-label learning is to train a model, i.e. a func-
tion h : X → Y. The model is capable to predict the proper output label vector
Ŷ = (ŷ1, ŷ2, . . . , ŷm), given the feature vector X ∈ X of an unseen input instance.
The model is learned from a dataset D = {(X(1), Y (1)), . . . , (X(n), Y (n))}, which
assembles n training examples.

2.2 Multi-label learning techniques for algorithm selection

In our context, an input instance stands for the vector of feature values which
describes a user ontology. On the other hand, each target variable stands for a
reasoner. More precisely, a target label depicts a reasoner rank or any other score
value. Indeed, the target labels could be real-valued, binary, ordinal, categorical
or even of mixed types. Each form of target labels has specific multi-label learning
task. In this paper, we are interested in three of these tasks. They are mainly:

– Multi-Label Classification task (MLC) [20]. It is concerned with learning
a model that outputs a bipartition of the output labels into relevant label set
Px and irrelevant label set Nx, where Px∩Nx = ∅ and Px∪Nx = Y. Literally,
the outputs are binary labels, i.e. Y = {0, 1}m, with 0 means irrelevant target.
This approach was used by Olmo et al. [12] to introduce a recommendation
system of relevant machine learning algorithms.

– Label Ranking task (LR) [20]. It is concerned with learning a model that
outputs an ordering of the labels according to their relevance to the input
instance. Hence, the h function maps every instance X ∈ X to a total strict
order, ≺, over the set of the output labels. A ranking over Y can conveniently
be represented by a permutation σ of the set of indices {1, . . . ,m}, where
σ(i) stands for the rank value of the target variable yi. LR techniques are the
building blocks of various algorithm selection systems: meta-learning solutions
[15], SAT solver portfolios [11] and the ontology meta-reasoner R2O2 [8].
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– Multi-target Regression task (MTR) [14]. It is also known as the multi-
variate or multi-output regression task. It is the most general form of multi-
label learning task. Indeed, MTR techniques are designed to predict multiple
real-valued target variables, whether they are binary ones (MLC case), per-
mutations (LR case) or float values. Formally, the MTR output space has the
following form: Y ≡ Rm. To best of our knowledge, no previous work have
employed MTR techniques to rank algorithms.

Based on this review, it seems that label ranking (LR) techniques are promising
solutions for the automatic selection of ontology reasoners. Indeed, they simplify
the ranking process, i.e. just one predictive model to train and they are known
to be highly accurate. Nevertheless, we are convinced that they cannot satisfy
all of our requirements. Actually, all of the reviewed works employ single ranking
criterion. Besides, they output the rank values of the alternatives without any
indication of their relevance. In fact, the computed rankings follow strict total
order, with the assumption that all the alternatives are relevant ones. This is a
quite different specification from what we need to fulfil. As previously explained,
we are interested in ranking relevant and irrelevant reasoners by applying partial
order rules. The real challenge is to find a way to incorporate our multi-criteria
preference rules in a multi-label learning method without any precision or in-
formation lost. Details of the proposed solution to overcome this challenge are
outlined in the forthcoming sections.

2.3 Ontology features

In our previous work [1], we proposed a rich set of ontology features, qualita-
tive and quantitative ones, covering a broad range of structural and syntactic
attributes of OWL ontologies. These features were put forward to thoroughly
describe the ontology design complexity. Our collection gathers a lot of well
known state-of-art metrics, some of them are already used reasoner prediction
solutions and in ontology quality evaluation systems. Our features are arranged
into four categories: (1) size description features, which characterize the amount
of knowledge explicitly asserted in the ontology; (2) expressivity description fea-
tures, which mainly includes the OWL profile and the description logic family
name; (3) structural features, which outline the design of named class and prop-
erty respective inheritance hierarchies; (3) syntactic features, which delineate the
main characteristic of the OWL grammar. To compute feature values, any full
translation of the OWL ontology to particular kind of graph representation is
avoided. In this paper experimentations, we discarded the metrics with high-
computing cost, like the tree depth of named class hierarchy. This left us with
123 ontology feature values to be measured.

3 Novel Multi-label Learning Method for Multi-criteria
Ranking of Ontology Reasoners

In this section, we introduce the Multi-RakSOR method. We give a short
specification of its reasoner ranking rules, before outlining its learning mechanism



Multi-Label Learning for Better Ranking of Ontology Reasoners 5

3.1 Reasoner ranking criteria and preference rules

A ranking represents a preference function over a set of alternatives. In our con-
text, the alternatives are some set of ontology reasoners considered as promising
candidates. This set is denoted by R. In [1, 2], we stressed on the importance of
considering not only the runtime of reasoners but also the correctness of their
derived results, as comparison criteria. We also highlighted the need to specify
particular reasoner robustness judgement constraints, like the range of ontolo-
gies, the reasoning task and the success/failure respective states.

In this paper, our study concerns the classification task of OWL DL and
OWL EL ontologies within a tight time schedule. We apply the Gardiner et
al. [4] reasoner correctness checking method. Accordingly, results delivered by a
reasoner are either correct or unexpected. Subsequently, we can specify a first
ordinal criterion which split up the set of reasoners into four groups according
to their termination state: (1) Success, when the reasoner terminates the task
within a fixed time-limit and delivers correct results; (2) Unexpected, in case of
an achieved task within the time limit, but has unexpected results, i.e. incorrect;
(3) Timeout, when the fixed time lapse is exceeded; and (4) Halt), when the
reasoner crashes and do not terminate the task. Given this specification, we can
formally describe the preference rules over ontology reasoners using bucket order
principals [3]. In short, a bucket is a set of equally ranked alternatives. Initially,
four buckets are defined each of them corresponds to a specific termination state
(S,U,T,H). A strict total order over the buckets is also decided: BS ≺ BU ≺
BT ≺ BH . Clearly, reasoners belonging to BS bucket are the most preferred
ones. The BU reasoners can terminate the reasoning task but the correctness
of their results are not approved by our correctness checking method. In our
opinion, they are much preferred than reasoners falling in the BT bucket, which
can not release any results within the fixed time lapse. Of course, the worse
reasoners are in BH bucket. Seeking more precision, a second ranking criterion
standing for the efficiency of the reasoner over the correctly classified ontologies is
applied. Accordingly, reasoners within the success bucket BS are linearly sorted
in an increasing order w.r.t their reasoning runtime. The final ordered bucket
partition over the set of the alternative reasoners, i.e. R, has the following form:
B = B1 ≺ . . . ≺ Bk ≺ BU ≺ BT ≺ BH , where k = |BS |. Reasoner ranks are
computed by following these rules. Subsequently, ties may appear in the list of
ranks. Indeed, tied reasoners imply that they did not succeed to classify the
ontology for the same failure cause.

Multi-RakSOR considers a further important criterion. This is the OWL pro-
file of the input ontology. It is widely known that some reasoners are specifically
tuned to particular OWL profiles. For instance, ELK is a highly performing OWL
EL specialised reasoner. On the other hand, there is no proof of the correctness
of its results when applied to OWL DL ontologies. In short, it is absurd to advise
an EL reasoner to handle a DL ontology. Given this fact, Multi-RakSOR splits
the set of alternative reasoners into DL and EL specialised subsets, i.e. RDL and
REL. Once the profile of an input ontology is identified, the above usual ranking
rules are applied over the corresponding set of reasoners.
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3.2 Specification of the novel multi-label ranking method

In the Multi-RakSOR system, the ranks of reasoners are computed prior to any
learning step, by applying to afore-described rules on actual results of reasoner
evaluations. The produced ranks together with the metrics describing the studied
ontologies are then, provided to the learning component. Afterwards, a multi-
label predictive model is trained, to be able to predict these ranks for future
unseen ontologies. We assert that providing only the reasoner ranks might be
misleading for the users. This is because the ranked list might include some,
or even only, reasoners expected to fail the classification of the input ontology.
Hence, it is important not only to predict the ranks but also to outline the
successful/unsuccessful reasoners.

To satisfy all of these requirements, we introduce a novel multi-label rank-
ing method applied to ontology reasoners. The learning process involves two
equally important subsequent goals. The first is to produce the bipartition of
set of the output labels Y into relevant label set Px and irrelevant label set Nx,
with Px ∪Nx = Y and Px ∩Nx = ∅. The second is a ranking over Y which re-
spects the previously introduced preference rules. Specially, the ranking should
be consistent, this means to satisfy the following couple of conditions:

– There should be no irrelevant labels ranked higher than relevant ones and
vice versa. Formally, whenever ∀yi ∈ Px and ∀yj ∈ Nx, then yi ≺ yj . In
other words, yi is preferred to yj and it is ranked lower σ(i) < σ(j).

– The relevant labels must form a strict total ordered set. Formally, ∀yi,∀yj ∈
Px with i 6= j, then either yi is preferred to yj or yj is preferred to yi. The
irrelevant labels are allowed to have equal ranks.

In the remainder of this paper, by relevant we refer to a reasoner expected to
terminate the classification task within the fixed time limit and to deliver correct
results, otherwise it is said to be irrelevant.

3.3 Multi-RakSOR learning and prediction steps

To put the above specification into practice, a transformation of the multi-label
ranking process is proposed. Indeed, the key idea of our solution is to learn a
separate multi-label model for each of the following sub-problems: (i) a model to
predict the ranking with ties of the alternative reasoners, denoted by hr() and
(ii) a model to predict the relevance of each reasoner, denoted by hb(). After-
wards, at the prediction time, the computed relevance bipartition and ranking of
reasoners for an input ontology, are synchronized by checking their consistency
and probably correcting their values. A further issue is about predicting a rank-
ing with ties using multi-label learning techniques. We previously highlighted the
lack of multi-label based solutions to predict a ranking which involves a partial
order. To overcome this absence, multi-target regression (MTR) techniques [14]
are employed. The latter ones can handle different kinds of learning problems
provided that the domain of the output variables is within Rm. In other words,
no matter whether the rank values are strict or tied, the MTR model will try to
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predict the closest possible values to the real ones. Now, we can list the required
steps to train the Multi-RakSOR predictive model.

Training time. the Multi-RakSOR model hmlti is comprised of 2 sub-models:
a multi-label classification (MLC) model, hb : Fd → {0, 1}m, which predicts
the relevance of the output labels, and a multi-target regression (MTR) model,
hr : Fd → Rm, which predicts the ranking with ties of these labels. Each of these
models is learned independently from dedicated datasets, respectivelyDb andDr.
The latter ones share the same input vectors, which describes the features of the
ontologies. It is important to note that the training datasets are profile specific
ones. In other terms, for each supported OWL profile, a dataset is assembled
and a dedicated Multi-RakSOR predictive model is trained.

Prediction time. During this online stage, to compute the ranking for a new
introduced ontology, our system operates in five steps. Firstly, the feature values
of the introduced ontology are computed and provided to the prediction compo-
nent. Afterwards, the Multi-RakSOR predictive model which corresponds to the
ontology OWL profile is invoked. Then, the MLC sub-model is applied to get
the predicted relevance of each reasoner. Similarly, the MTR model is addressed
to get the predicted ranks. Finally, the consistency of the computed ranks are
checked and probably adjusted. More details about our ranking checking method
are provided in the upcoming subsection.

3.4 Ranking consistency checking method

Based on the specification provided in Subsection 3.2, the ranking checking
method must ensure that: 1) the rank values of the relevant labels form a strict
total ordered set of natural numbers; and 2) no irrelevant reasoner is ranked
lower than a relevant one. If one of these rules is broken, then the ranking is ad-
justed. Algorithm 1 shows the steps achieved by rankingCheckingMethod(). The

procedure takes as input the matrix Ŷ, which encodes the different computed
predictions. We design by maxPx

σ the maximal rank value of the relevant output
labels. Known that the ranks take values in N∗ and they are expected to be lin-
early sorted in an increasing strict order, then we can assert that maxPx

σ = |Px|.
Through the first loop of Algorithm 1, the maxPx

σ value is computed. The rank
values corresponding to the relevant labels are stored in the Rx array. The cells
of this array corresponding to irrelevant reasoners are set to 0. The resulting
Rx array is then handled by rankOrderTransformation(). The main role of this
function is to ensure the application of our 1st consistency rule. This idea be-
hind this function is quite straightforward. The ranks in the Rx array are seen as
numerical scores. By consequence, the function computes the strict total order
of their values. Potential ties of the relevant reasoners rank values are arbitrary
broken. For instance, let [1, 3, 3, 3, 5, 4] be the predicted ranks of 6 reasoners and
[1, 0, 1, 1, 1, 0] their predicted relevance. By substituting the ranks of the irrele-
vant reasoners by 0, the resulting Rx array is equal to [1, 0, 3, 3, 5, 0]. It is clear
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Algorithm 1: The ranking consistancy checking method

1 Function rankingCheckingMethod(Ŷ ∈Mm×2(R))
2 Rx ← [0, . . . , 0] ; // Rx is of size m

3 maxPx
σ ← 0 ;

4 for i← 1 to |Ŷ| do
5 if Ŷ[i][1] = 1 then

6 Rx[i]← Ŷ[i][2] ;

7 maxPx
σ ← maxPx

σ + 1 ;

8 end

9 end
10 Rx ← rankOrderTransformation(Rx) ;

11 for i← 1 to |Ŷ| do
12 if Ŷ[i][1] <> 0 then // Relevant label, update the rank

13 Ŷ[i][2]← Rx[i] ;

14 else if Ŷ[i][2] ≤ maxPx
σ then // Irrelevant label, Inconsistency case

15 updateIrrelevantRanks(Ŷ,maxPx
σ , i) ;

16 end

17 end

18 return Ŷ ;

that these are non consistent rank values2. In this case, rankOrderTransforma-
tion() function ignores the 0 values and considers the remaining values as scores
to be ranked. It finally returns [1, 0, 2, 3, 4, 0]. Afterwards, the inconsistencies
w.r.t. the second rule are caught by simply verifying whether an irrelevant label
has a rank lower than maxPx

σ (see Algorithm 1, Line 14). If this is the case, then
the first inconsistent rank is set to (maxPx

σ +1), and subsequently, all the remain-
ing rank values of irrelevant reasoners are updated. Our solution is intuitive and
inexpensive one, capable at least to fix the inconsistencies. As a matter of fact,
in our opinion, the exact ranking of the irrelevant reasoners is less important for
the user. In this example, the final adjusted ranking is equal to [1, 5, 2, 3, 4, 6].

4 Data Collection

To build up the Multi-RakSOR system, data describing the empirical perfor-
mances of reasoners are required. Therefore, a large scale evaluations of an im-
portant number of reasoners is conducted using the evaluation tools employed
in the latest Ontology Reasoner Evaluation Workshop (ORE 2015) [13]. This
includes the evaluation Framework3 and the ontology corpus.

2 The ranking contains ties and is not linear.
3 ORE Framework is available at https://github.com/andreas-steigmiller/

ore-2014-competition-framework/
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Ontologies. This includes 1967 ontology collected from the ORE 2015 cor-
pus [13]. 1920 of them are sampled from three different source corpora 4 and 47
are user submitted ontologies5. At first, the OWL profiles of the ontologies are
checked. The process revealed that 11 user submitted ontologies do not fit to any
of the standard OWL profiles. It was also impossible to load 2 other ontologies.
This left us with 1954 validated ontologies, 1191 are within the OWL DL profile
and the remaining 763 are OWL EL ones. Afterwards, the selected ontologies
are arranged into 2 different collections, based on their profiles.

Reasoners and evaluations. To build up our advising system, we selected a
representative subset of popular and efficient ontology reasoners. More precisely,
we picked up the 10 best ranked reasoners 6 in both the DL and EL classifica-
tion challenges of ORE 2015. Then, we assigned them to 2 groups: OWL DL
and OWL EL specialised reasoners. In the first group, we can find Konclude,
HermiT7, MORe8, TrOWL, FaCT++, JFact, Racer and finally Pellet9.
The second group has the same reasoners as the first one, in addition to, ELK
and ELepHant. Description and references to these systems could be found in
[13]. By following the ORE competition processing steps, two classification chal-
lenges (DL and EL) are set up. Each challenge puts the selected reasoners into
comparison when attempting to classify the ontology collection that corresponds
to their group. To conduct these evaluations, we run the ORE Framework in the
sequential mode on a machine equipped with an Intel Core I7, CPU running
at 3.4GHz and having 32GB RAM, where 10GB were made available for each
reasoner. We set the condition of 3 minutes time limit to classify an ontology by
a reasoner, where only 150 seconds were allowed for reasoning and 30 seconds
could be used for parsing and writing results. In the ORE Framework, the times
are measured in wall clock time instead of CPU time. Figure 1 summarizes the
results of the carried out challenges 10. For each OWL profile and for every rea-
soner, the percentage of ontologies classified with success is illustrated, together
with the failure percentage. Figure 1 details also the different cases of failure
(Unexpected, Timeout and Halt). Worth to be noted, the reasoners are ordered
according to their success rate. Furthermore, Figure 2 depicts the average run-
time exhibited by every reasoner over the correctly classified ontologies, i.e. the
success cases, and for each ontology collection. We can notice that Konclude is
the most robust reasoner over the DL ontologies, while ELK outperforms all the
system over the EL Ontologies. Konclude is rated the 3rd on the EL classifica-
tion challenge. In general, the success rates of the different reasoners are very
close when considering EL ontologies, but they are quiet distinct in the case of
DL ones. Indeed, there is a much important failure rate in the DL classification

4 Available at https://zenodo.org/record/18578#.WReUzlXyjcc
5 Available at https://zenodo.org/record/50737#.WReW01Xyjcc
6 Reasoners are available at https://zenodo.org/record/50738#.WRhPVVXyjcc
7 Specifically, it is the HermiT implementation based on OWL API 4 (HerimT-OA4).
8 This is exactly the MOReHermiT implementation.
9 We used the Pellet implementation based on OWL API 4 (Pellet-OA4).

10 Evaluation results produced by ORE for the 10 reasoners are available at https:

//github.com/Alaya2016/OntoClassification-Results2017/
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Fig. 1. Summary of reasoner evaluation results of the classification track over DL and
EL respective ontology collections.

challenge. This is due to the high expressivity of the OWL 2 DL profile, com-
paring to the EL one. By looking to Figure 2, we can observe that systems like
Hermit, which have the 2nd best success rate, has also the worst reasoning aver-
age runtime over the correct cases. In overall, we can remark that reasoner ranks
computed based on correctness does not completely meet their ranks based on
efficiency. Given these facts, it is obvious that defining general rules to select
”best” reasoner for any ontology is not a trivial task and may not be effective in
practice.

Fig. 2. Comparison of reasoner average runtime for correctly classified ontologies (suc-
cess cases, time in millisconds) over the DL and the EL respective ontology collections.

Training and testing datasets. For learning evaluation purpose, we split
up each ontology collection into training and testing sets. The decomposition
respects, in the best possible way, the distribution of ontologies over the size
bins. In overall, we selected 654 test ontologies, i.e. 391 DL and 263 EL ones.
This selection is hold out to carry out the evaluations of prediction quality. The
remaining 800 DL and 500 EL ontologies are gathered in the training set to
build up the Multi-RakSOR predictive models. As final step, the features values
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of the selected ontologies are measured (c.f. Subsection 2.3). Then, the reasoner
ranking and relevance vectors are computed for every ontology in the training
set. Thus, OWL profile based datasets were created by incorporating the feature
vectors and their corresponding relevance/rank vectors.

5 Experimental Evaluation of Multi-RakSOR

Multi-RakSOR11 is realised with Java. It has a generic design and three main
building blocks: the ontology profiler, the multi-learner and the multi-predictor
components. In this paper experiments, Multi-RakSOR uses the Binary Rele-
vance (BR) algorithm [7] as the base MLC learner and the Ensemble of Re-
gressor Chains (ERC) algorithm [14] as the base MTR learner. Mulan12 [17],
the Java multi-label learning API, allowed the access to these state-of-art algo-
rithms. We recall that 654 ontologies were held out to evaluate the prediction
quality of Multi-RakSOR. Given a test ontology, the predicted reasoner rele-
vance and ranking values are compared to the ideal ones. These are the actual
correct relevance values and ordering of the reasoners given the ontology under
examination. Afterwards, the agreement between the predicted and the ideal
values are assessed using the metrics, we describe in the following. Our results
are then compared against existing multi-label learning solutions.

5.1 Evaluation metrics

A two-step evaluation procedure is designed to adjudge the prediction quality
of Multi-RakSOR. First, the accuracy of the predicted reasoner relevance bipar-
tition is checked. For this kind of evaluations, the assessment metrics of binary
multi-label classification models [20] are employed. In particular, the F1-Measure
for each test case is computed and then, averaged over the whole test set. Sim-
ilarly, the Hamming loss (HM-Loss) score is measured and averaged across
all the test cases. This metric computes the percentage of misclassified labels.
Generally speaking, a good MLC model should maximize its F1-Measure value,
while minimizing its HM-Loss value. Later on, the quality of the produced rank-
ings is assessed using 4 metrics falling in 2 categories. We already employed these
metrics in [2]. The main purpose of the first metric category is to show to what
extent a predicted ranking is correlated to the ideal one. It is composed of the
average value of the generalized Kendall Tau correlation coefficient, denoted by
KendalTauX and the average value of the Spearman rank correlation coefficient,
denoted by SpearmanRho. The second category is made up from information
retrieval based metrics. They examine how well we are ranking the reasoners at
the top of the list, i.e. at the Kth position. To obtain an overall idea of precision
considering the whole test set, the Mean Average Precision is computed and
denoted by MAP@K. We put our focus on two particular values: MAP@1 and
MAP@3.
11 A demo application reproducing the evaluations of Multi-RaKSOR is available at

https://github.com/Alaya2016/Multi-RakSORDemo/
12 Mulan is available at http://mulan.sourceforge.net/download.html
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5.2 Multi-label learning methods

We compare the quality of Multi-RakSOR relevance prediction against 4 well
known MLC solutions [20]: (1) the neural network approach for the multi-label
classification task (BP-MLL); (2) the Random K -Labelsets method (RAK EL);
(3) the adaptive boosting algorithm for multi-label learning (AdaBoost.MH); and
(4) the multi-label k-Nearest Neighbor (ML-kNN ) algorithm. In a second stage,
we compare the quality of Multi-RakSOR predicted rankings to those produced
by 4 label ranking (LR) solutions [15]: (1) the K-Nearest Neighbor approach for
label ranking (LR-kNN ); (2) the predictive clustering trees for ranking (PCTR);
(3) the label ranking trees (LRT ); and (4) the ranking by pairwise comparison
algorithm (RPC ). It is worth to be noted that these algorithms predict only the
ranks of the target labels and do not separate them into relevant/irrelevant ones.
However, they are the building blocks of the meta-reasoner13 R2O2 [8]. For each
learning task (MLC, MTR) and for every training dataset (DL, EL), we train
the predictive models of all of the aforementioned learning solutions. Then, we
assess their predictive quality over our testing datasets.

Fig. 3. Comparison summary of relevance prediction quality achieved by the examined
works over each of the OWL profile based test datasets.

5.3 Relevance prediction assessment results

Figure 3 depicts the assessment results of the reasoner relevance bipartition pre-
dictions achieved by the the studied solutions. For both the DL and the EL
datasets, Multi-RakSOR showed very high prediction capabilities, characterized
by a score of F1-measure above 0.91 and low Hamming Loss (HM-Loss) value.
It outperformed all the other MLC solutions and rated the first over the two
datasets. We can also remark that predicting the relevance bipartition over EL
test cases seems to be more easier than over DL cases. Actually, Multi-RakSOR
has achieved a close to optimum F1-Measure. This could be explained that all of
the studied reasoners has showed closer performances when classified EL ontolo-
gies. Hence, their performance are almost predictable on this kind of ontologies.

13 It is to be considered that we didn’t get access to R2O2 running executable. Hence,
we were enable to establish any comparison with this system.
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5.4 Ranking prediction assessment results

Figure 4 sketches the assessment results of the ranking quality achieved by the
examined MTR methods over the DL and EL testing datasets. First, it can
be noted that in both the datasets and according to the different assessment
metrics, Multi-RakSOR have outperformed its base MTR leaner, the ERC algo-
rithm. This observation pinpoints the positive impact of our proposed ranking
correction step (c.f. Subsection 3.4). Accordingly, we can assert that checking

Fig. 4. Comparison summary of the ranking prediction quality achieved by the exam-
ined works over each of the OWL profile based test datasets.

the consistency of the predicted ranks w.r.t. the predicted relevance of reasoners
is effective and can contribute to the overall improvement of the ranking quality.
Multi-RaKSOR can identify the top most performing reasoner, regarding both
the correctness and the efficiency criteria, with a precision of more than 88%, for
both DL and EL ontologies. According to Kendall TauX, Multi-RaKSOR is also
capable to predict the ties across the irrelevant reasoners and produce rankings
that are at 94% positively correlated to the real ones.

More interestingly, Multi-RakSOR method have overpassed all of its coun-
terparts, LR-KNN, RPC, PCTR and LRT, w.r.t. the different assessments mea-
sures. This result is important since these are well recognized algorithms in the
field of label ranking. Besides, they are part of R2O2, the only existing rea-
soner ranking system. These empirical results could be explained by the fact
that none of these algorithms is originally designed to predict a ranking which
includes ties. Even that they can handle such ranking, they are not particularly
optimized for. Once again, these findings show that our proposed Multi-RakSOR
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method adds good multi-label ranking abilities to the existing solutions. Despite
the challenges, these results proves that it was worthwhile to investigate time
and effort in exploring and accommodating multi-label learning techniques for
better automatic ranking of ontology reasoners.

6 Experimental Evaluation of Meta-RakSOR

The main purpose of this set of evaluations is to investigate the effectiveness of
building a meta-reasoner upon our multi-label ranking solution. A meta-reasoner
has various common treats with SAT algorithm portfolio approach [19, 11]. The
portfolio aims to take advantage of the complementarity of the algorithms by
combining them. Roughly speaking, a portfolio could be built in by gathering
a set of performing algorithms, together with an intelligent selector capable to
decide the most performing one to any input instance. Multi-RakSOR ranking
method could be seen as an intelligent selector by only considering the reasoner
on the top of the ranked list. From a theoretical perspective, Multi-RakSOR
could easily be evolved into a meta-reasoner. Indeed, the computing algorithms
of ontology features have polynomial complexity with respect to the size of the
inputs. Furthermore, the predictions are computed in constant time. In the fol-
lowing, we experimentally examine the worthiness of this assumption.

Reasoner Success Failure AVG.
#U #T #H Time

M-RakSOR 367 12 8 4 1545.69
Konclude 366 12 11 2 1358.43
HermiT 334 3 42 12 14243.19
MORe 326 26 35 4 6428.77
FaCT++ 295 4 69 23 4509.77
Pellet 287 4 84 16 2157.61
TrOWL 274 84 0 33 2157.61
Racer 245 67 75 4 4813.06
JFact 196 39 94 62 8258.99

Table 1. Results summary of the OWL
DL classification challenge (Test Set).

Reasoner Success Failure AVG.
#U #T #H Time

M-RakSOR 263 0 0 0 2166.13
ELK 262 0 0 1 635.68
Konclude 259 4 0 0 817.01
MORe 259 3 1 0 1807.03
ELepHant 258 1 4 0 1179.67
HermiT 256 0 7 0 6418.43
TrOWL 243 0 0 20 1116.69
Pellet 242 1 16 4 6081.54
FaCT++ 232 0 29 2 6092.75
Racer 214 31 18 0 3994.49
JFact 186 24 52 1 5767.34

Table 2. Results summary of the OWL
EL classification challenge (Test Set).

The upgraded version of our system is called Meta-RakSOR. Given an in-
put ontology, Meta-RakSOR computes its feature vector then, predicts the ranks
of the available reasoners using the approach described in Section 3. Finally, the
reasoner with the lowest predicted rank value is invoked. In our experiments, we
repeated this process for each EL and DL test ontology. We stored the compu-
tational time of the full prediction and classification steps. Then, we compared
the Meta-RakSOR achieved results to those computed by the other reasoners
(c.f. Section 4). Table 1 and Table 2 report the evaluation results respectively
over DL and EL ontology test sets14. They report the number of success and

14 Meta-RakSOR can handle both DL and EL profiles.
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failure cases and the average runtime in milliseconds over the correctly classified
ontologies (i.e. the AVG. Time column). It can be observed that Meta-RakSOR
has the highest level of correctly processed ontologies for both the DL and EL
ontologies. It is rated the first on both challenges. However, Meta-RakSOR has
not outperformed the other reasoners in terms of classification runtime. It has
the 2nd lowest average runtime over correctly classified DL ontologies, just be-
hind Konclude. However, it is placed the 6th by considering the average runtime
over EL ontologies. Nevertheless, for this set of ontologies, it showed better per-
formance than known reasoners, like FaCT++, HermiT and Pellet. In overall,
the achieved results are very encouraging ones. It proves the potential bene-
fits of Meta-RakSOR, especially in terms of result correctness. Still, we assert
that using a meta-reasoner for light-weighted and inexpressive ontologies is not
worthwhile, since the time overhead due to the prediction steps may overpass
the actual classification time. Based on this observation, Meta-RakSOR could
be improved by fixing a default reasoner to be applied for easy cases without
needing any prediction effort.

7 Conclusion

In this paper, we introduced a novel automatic ranking mechanism of ontology
reasoners. It combines multi-label classification and multi-target regression tech-
niques. It achieves both reasoner ranking and reasoner relevance prediction in
a consistent way. The proposed system considers the correctness and the effi-
ciency of reasoners in the ranking process. We studied separately OWL DL and
OWL EL specific reasoners. We achieved high ranking prediction quality and
outperformed existing solutions. We also examined the feasibility of employing
our ranking solution as the key component of a meta-reasoner. The experimental
results showed the potential of this proposal. However, it is obvious that more
optimisation steps are required to improve its performances. For future work,
we are intending to examine more reasoner evaluation criteria, such as the en-
ergy and memory consumption. This is a real challenge for reasoning on mobile
devises. We are also planning to study different reasoning tasks, like consistency
checking and realisation. Actually, our ultimate goal is to conduct different rea-
soner evaluation campaigns under a variety of machine, time and memory config-
urations and for different reasoning tasks. Once these data is gathered, a larger
scale multi-criteria ranking system of ontology reasoners could be established.
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