
Zooming in on Ontologies:
Minimal Modules and Best Excerpts?

Jieying Chen,1 Michel Ludwig, Yue Ma1 and Dirk Walther

1 Laboratoire de Recherche en Informatique, Université Paris-Sud, France
{jieying.chen,yue.ma}@lri.fr, {michel.ludwig,dirkww}@gmail.com

Abstract. Ensuring access to the most relevant knowledge contained in
large ontologies has been identified as an important challenge. To this
end, minimal modules (sub-ontologies that preserve all entailments over
a given vocabulary) and excerpts (certain, small number of axioms that
best capture the knowledge regarding the vocabulary by allowing for a
degree of semantic loss) have been proposed. In this paper, we introduce
the notion of subsumption justification as an extension of justification (a
minimal set of axioms needed to preserve a logical consequence) to cap-
ture the subsumption knowledge between a term and all other terms in
the vocabulary. We present algorithms for computing subsumption justi-
fications based on a simulation notion developed for the problem of decid-
ing the logical difference between ontologies. We show how subsumption
justifications can be used to obtain minimal modules and to compute
best excerpts by additionally employing a partial Max-SAT solver. This
yields two state-of-the-art methods for computing all minimal modules
and all best excerpts, which we evaluate over large biomedical ontologies.

1 Introduction

Knowledge about a complex system represented in ontologies yields a collection
of axioms that are too large for human users to browse, let alone to comprehend
or reason about it. In this paper, we propose a computational framework to zoom
in on large ontologies by providing users with either the necessary axioms that
act as explanations for sets of entailments, or fix-sized sub-ontologies containing
the most relevant information over a vocabulary.

Various approaches to extracting knowledge from ontologies have been sug-
gested including ontology summarization [23,25,29], ontology modularization [9,
14,26–28], ontology decomposition [6, 20], and consequence justifications [3, 11].
Existing ontology summarization systems focus on producing an abridged ver-
sion of RDF/S ontologies by identifying the most important nodes and their links
under certain numeric measures, e.g., in/out degree centrality of a node [25]. In
contrast, ontology modularization and decomposition developed for Description
Logics (DLs) [2] is to identify ontological axioms needed to define the relation-
ships between concept and role names contained in a given signature. Modules
are sub-ontologies that preserve all logical consequences over a given signature,

? This work is partially funded by the ANR project GoAsQ (ANR-15-CE23-0022).

Ontology ⊥>?-Module

MEX-Module

Minimal Module

Best Excerpt

Fig. 1: Zooming in on an ontology

Decreased blood volume v Cardiovascular finding (1)

Cardiovascular shunt v Cardiovascular finding (2)

Cardiac shunt v Cardiovascular shunt u (3)

∃RG.(∃FS.Heart structure)

Cardiovascular structure v Body system structure (4)

Fig. 2: Example axioms in Snomed CT
(FS for Finding site, RG for Role Group)

and ontology decomposition partitions an ontology into atoms that are never
split by different modules. Computing minimal modules is known to be hard.
Hence, existing systems are either restricted to tractable DLs [5, 13, 15] or they
compute approximations of minimal modules [6, 9, 21]. This has resulted in two
important module notions: the semantics-based modules computed by the sys-
tem MEX [13] and the syntactic locality-based ⊥>?-modules [22]. Figure 1 shows
the set inclusion relationship between these notions, where we focus on MEX-
modules, minimal modules and best excerpts (see below) in this paper. A justi-
fication for a particular logical consequence is a minimal set of axioms that pre-
serve the entailment. Although computing all justifications is generally a hard
task, different approaches have been shown promising for this task [1,10,17,30].

Different module notions and justifications share the property that the num-
ber of the axioms they contain is not bounded (besides the size of the entire
ontology). Even minimal modules for small signatures may be large rendering
human understanding more difficult. To this end, the notion of best excerpts [4]
has been introduced as size-bounded subsets of ontologies that preserve as much
knowledge about a given signature as possible.

The following real-world example illustrates possible benefits of best ex-
cerpts. Suppose a user is concerned with the cardiovascular disease defined in the
Snomed CT1 ontology T consisting of 317 891 axioms. The user then selects the
terms Cardiovascular finding, Decreased blood volume and Cardiac shunt from
T as her signature Σ of interest. To help the user zoom in on T for Σ, we
can extract, for instance, the ⊥>?-module and obtain 51 axioms, or the small-
est minimal modules, which yields a further reduction down to 15 axioms,2

among which are the axioms given in Figure 2. Arguably our user still feels
overwhelmed by the amount of 15 axioms. This is where the notion of best
k-excerpt steps in. By setting k = 3, the user can get a best 3-excerpt E1 con-
sisting of the axioms 1–3 listed above. By zooming in further, say extracting
one-sized excerpts, she obtains E2 consisting of the first axiom. As a best ex-
cerpt, E1 guarantees all logical entailments over the terms Cardiac shunt and
Decreased blood volume. And the singleton E2 keeps the complete information
over the term Decreased blood volume. Note that E2 is returned due to the fact
that it needs more than two axioms to preserve the full information for any other

1 http://www.ihtsdo.org/snomed-ct
2 Refer to https://goo.gl/o1QFGm for the whole list and for cases where larger min-

imal modules appear in practice.

concept in Σ. Moreover, axiom 4 is in M but missing in E1 and in E2. This is
because they merely serve to provide background knowledge for reasoning over,
thus not directly linked to, the user’s input terms Σ, which are excluded from
best excerpts due to the size restriction. In this way, the user gains control over a
large ontology. An approximate approach to computing ontology excerpts based
on information retrieval was introduced in [4]. However, it cannot guarantee to
compute the best excerpt.

In this paper, we generalise the notion of a justification to subsumption jus-
tification as a minimal set of axioms needed to define the relationship between a
selected term to the remaining terms in a given vocabulary. Inspired by a proof-
theoretic solution to the logical difference problem between ontologies [7,18], we
develop recursive algorithms to compute subsumption justifications. A minimal
module preserving the knowledge about a vocabulary can now be characterised
as the union of subsumption justifications, one for each term in the vocabulary.
By taking the union of subsumption justification for as many terms as possible
without exceeding a given size limitation yields a best excerpt. The algorithm
operates in two stages: First, for every term in the vocabulary, all subsumption
justifications are computed. Similarly to modules, no bound on the size of such
justifications exists. Second, minimal modules are obtained by taking the union
of one subsumption justification for every term, and best k-excerpts, for k > 0,
are obtained by packing a subsumption justification for as many terms as pos-
sible into a space of at most k axioms. The latter is solved via an encoding into
a partial Max-SAT problem [8]. Note that [4] only considers excerpts based on
information retrieval, which provide an approximate solution that can be com-
puted rather quickly, albeit not capturing the knowledge in an optimal way. In
this paper, however, we provide an algorithm for computing best excerpts via
subsumption justifications. Best excerpts can be used as a benchmark to evaluate
the quality of other excerpt or incomplete module notions.

Our contribution is three-fold: (i) We define the notion of subsumption justifi-
cation and then introduce two of its applications (Section 3): computing minimal
modules and best excerpts; (ii) moreover, we present algorithms of computing
subsumption justifications (Section 4); (iii) finally, we evaluate the performance
of overall algorithms (Section 5). Our algorithm for computing minimal modules
outperformed the search-based approach from [5], and as the first best excerpt
extraction algorithm, we can obtain the excerpts of a better quality than the
excerpts based on information retrieval [4].

2 Preliminaries

Let NC and NR be mutually disjoint (countably infinite) sets of concept names
and role names. We use A, B, X, Y , Z to denote concept names, and r, s for
role names. The set of ELH-concepts C and the set of ELH-inclusions α are
built by the following grammar rules: C ::= > | A | C u C | ∃r.C, α ::= C v C |
C ≡ C | r v s, where A ∈ NC and r, s ∈ NR. An ELH-TBox is a finite set of
ELH-inclusions (also called axioms).

The semantics is defined using interpretations I = (∆I , ·I), where the do-
main ∆I is a non-empty set, and ·I is a function mapping each concept name A

to a subset AI of ∆I and every role name r to a binary relation rI over ∆I . The
extension CI of a possibly complex concept C is defined inductively as: (>)I :=
∆I , (C uD)I := CI ∩DI , and (∃r.C)I := {x ∈ ∆I | ∃y ∈ CI : (x, y) ∈ rI}.

An interpretation I satisfies a concept C, an axiom C v D, C ≡ D, or r v s
iff CI 6= ∅, CI ⊆ DI , CI = DI , or rI ⊆ sI , respectively. An interpretation I is
a model of T if I satisfies all axioms in T . An axiom α follows from T , written
T |= α, if for all models I of T , it holds that I satisfies α.

An ELH-terminology T is an ELH-TBox consisting of axioms of the form
A v C, A ≡ C, r v s, where A is a concept name, r and s are role names, C is
an ELH-concept and no concept name A occurs more than once on the left-hand
side of an axiom of the form A ≡ C. To simplify the presentation we assume
that terminologies do not contain any occurrence of > and no axioms of the
form A ≡ B (after having removed multiple B-conjuncts) for concept names A
and B. Note that the material presented in the paper can easily be extended to
take > into account. A terminology is said to be acyclic iff it can be unfolded
(i.e., the process of substituting each concept name A by the right-hand side C
of its defining axiom A ≡ C terminates).

We say that a concept name A is conjunctive in T iff there exist concept
names B1, . . . , Bn, n > 0, such that A ≡ B1 u . . . u Bn ∈ T ; otherwise A is
said to be non-conjunctive in T . An ELH-terminology T is normalised iff it
only contains axioms of the forms A v B1 u . . . u Bm, A ≡ B1 u . . . u Bn,
A v ∃r.B and A ≡ ∃r.B, where m ≥ 1, n ≥ 2, A,B,Bi are concept names,
and each conjunct Bi is non-conjunctive in T . Every ELH-terminology T can
be normalised in polynomial time into a terminology T ′ such that for all ELH-
inclusions α formulated using concept and role names from T only, it holds that
T |= α iff T ′ |= α. Note that each axiom α ∈ T is transformed individually into
a set of normalised axioms. Moreover, we assume that when T is normalised, a
denormalisation function δT : T ′ → 2T is computed that maps every normalised
axiom β ∈ T ′ to a set of axioms δT (α) ⊆ T that consists of all axioms α ∈ T
that generated β during their normalisation.

We denote the number of axioms in a TBox T with |T |. A signature Σ is a
finite subset of NC ∪ NR. For a syntactic object χ (i.e., a concept, an axiom, or
a TBox), sig(χ) is the set of concept and role names occurring in χ. We denote
with sigNC(χ) the set of concept names in sig(χ). We write ELHΣ to denote
the set of ELH-concepts C such that sig(C) ⊆ Σ. A subset M ⊆ T is called
a justification for an ELH-concept inclusion α from T iff M |= α and M ′ 6|= α
for every M ′ (M . We denote the set of all justifications for an ELH-concept
inclusion α from an ELH-terminology T with JustT (α). Note that JustT (α) may
contain exponentially many justifications in the number of axioms in T .

The logical difference between two ELH-terminologies T1 and T2, denoted
as cDiffΣ(T1, T2), is the set of all ELH-inclusions α of the form C v D for
ELH-concepts C and D such that sig(α) ⊆ Σ, T1 |= α, and T2 6|= α.

If two terminologies are logically different, the set cDiffΣ(T1, T2) consists of
infinitely many concept inclusions. The primitive witnesses theorems from [12]
allow us to consider only certain inclusions of a simpler syntactic form. It states
that if α ∈ cDiffΣ(T1, T2), where T1 and T2 are ELH-terminologies and Σ a
signature, then either A v D or C v A is a member of cDiffΣ(T1, T2), where

A ∈ sigNC(α) and C,D are ELH-concepts occurring in α. We call such concepts A
witnesses and denote the set of witnesses with cWtnΣ(T1, T2). It holds that
cWtnΣ(T1, T2) = ∅ iff cDiffΣ(T1, T2) = ∅.

A k-excerpt of T w.r.t. Σ is a subset E of T such that | E |≤ k. Let µ be an
incompleteness measure, we say a k-excerpt E is the best excerpt of T w.r.t. Σ
if µ(T , Σ, E) = min{µ(T , Σ, E ′) | E ′ is a k-excerpt of T }. In this paper, we use
the size of concept witness cWtnΣ(T , E) as the incompleteness measure.

3 Application of Subsumption Justification

In this section, we introduce the notion of subsumption justification, and give
two applications of this notion. The algorithms for computing subsumption jus-
tifications are given separately in Section 4.

We assume that T , T1, and T2 are acyclic normalised ELH-terminologies, Σ
is a signature, X ∈ NC is concept names.

Definition 1. We say that M⊆ T is an 〈X,Σ〉-subsumee module of T iff for
every C ∈ ELHΣ, T |= C v X implies M |= C v X. Similarly, we define the
notion of an 〈X,Σ〉-subsumer moduleM of T to be a subset of T such that for
every D ∈ ELHΣ, T |= X v D implies M |= X v D.

Additionally, a set M is called an 〈X,Σ〉-subsumption module of T iff M
is an 〈X,Σ〉-subsumee and 〈X,Σ〉-subsumer module of T . An 〈X,Σ〉-subsumee
(resp. subsumer, subsumption) justification is an 〈X,Σ〉-subsumee (resp. sub-
sumer, subsumption) module of T that is minimal w.r.t. (.

We denote the set of all 〈X,Σ〉-subsumee (resp. subsumer, subsumption) justi-
fications as J←T (X,Σ) (resp. J→T (X,Σ),JT (X,Σ)). Note that there may exist
multiple 〈X,Σ〉- (subsumer, subsumee) subsumption justifications.

Example 1. Let Σ = {A1, A2, B} and let T = {α1, α2, α3, α4, α5, α6, α7}, where
α1 = X ≡ Y u Z, α2 = Y v B, α3 = Z ≡ Z1 u Z2, α4 = A1 v Y , α5 = A2 v Z,
α6 = A2 v Z1, and α7 = A2 v Z2. Then the sets M1 = {α1, α3, α4, α6, α7},
M2 = {α1, α4, α5}, and T are all 〈X,Σ〉-subsumee modules of T , whereas only
M1 andM2 are 〈X,Σ〉-subsumee justifications of T . The setM3 = {α1, α2} is
an 〈X,Σ〉-subsumer justification of T . Finally, the setsM1∪M3 andM2∪M3

are 〈X,Σ〉-subsumption justifications of T .

Proposition 1. M is an 〈X,Σ〉-subsumption module of T iff X 6∈ cWtnΣ(T ,M).

Proposition 1 follows from the primitive witnesses theorems [12] and Definition 1.

3.1 Application 1: Computing Minimal Modules

A module is a subset of an ontology that can act as a substitute for the ontology
w.r.t. a given signature. In this paper, we consider the notion of basic modules
from [5] for acyclic ELH-terminologies.

Definition 2 (Basic Module [5]). Let T be an ELH-terminology, and let Σ
be a signature. A subset M⊆ T is called a basic ELH-module of T w.r.t. Σ iff
cDiffΣ(T ,M) = ∅.

To apply subsumption justifications for computing all modules that are min-
imal w.r.t. (, we define the operator ⊗ to combine subsumption justifications of
T for all Σ-concept names, as follows: Given a set S and S1,S2 ⊆ 2S , S1⊗S2 :=
{S1 ∪ S2 | S1 ∈ S1, S2 ∈ S2 }. For instance, if S1 = {{α1, α2}, {α3}} and S2 =
{{α2, α3}, {α4, α5}}, then S1⊗S2 = {{α1, α2, α3}, {α1, α2, α4, α5}, {α2, α3}, {α3,
α4, α5}}. Note that the ⊗ operator is associative and commutative.

For a set M of sets, we define a function Minimise⊆(M) as follows: M ∈
Minimise⊆(M) iff. M ∈ M and there does not exist a set M′ ∈ M such that
M′ (M. Finally, we can use the ⊗ operator and the Minimise⊆(M) function
to combine sets of subsumer and sets of subsumee modules to obtain a set of
subsumption modules, whose correctness is guaranteed by Proposition 1.

Theorem 1. Let MTΣ be the set of all minimal basic ELH-modules of T w.r.t. Σ.
Then MTΣ := Minimise⊆(⊗X∈Σ∩NC

(J→X (X,Σ)⊗ J←X (X,Σ))).

Please note that, given a TBox and a signature, MEX-module is unique
[14] but there may exist exponential many minimal basic modules in theory. A
relation between basic module and MEX module is given below:

Proposition 2. Let M be the MEX-module of T w.r.t. Σ. It holds that for
every minimal basic EL-module M′ of T w.r.t. Σ, M′ ⊆M.

Intuitively, Proposition 1 follows from the fact that MEX-modules are based
on a semantic inseparability notion [14], whereas the notion of basic modules
uses a weaker, deductive inseparability notion based on EL-inclusions [5]; see,
e.g., [19] for more on inseparability.

3.2 Application 2: Computing Best Excerpts

Based on subsumption justifications, in this section, we present an encoding
of the best k-excerpt problem in a partial Max-SAT problem, with the aim of
delegating the task of finding the best excerpt to a Max-SAT solver. In that way
we can leverage the decades of research efforts dedicated to developing efficient
SAT solvers for our problem setting. We continue with reviewing basic notions
relating to propositional logic and Max-SAT.

Partial Max-SAT is an extension of the Boolean Satisfiability (SAT) to opti-
mization problems. Formally, a partial Max-SAT problem P is pair P = (H,S)
where H and S are finite sets of clauses, called hard and soft clauses, respec-
tively. We say that a valuation v is a solution of P iff. v satisfies all the clauses
in H and there does not exist a valuation v′ that satisfies all the clauses in H
and

∑
ψ∈S v

′(ψ) >
∑
ψ∈S v(ψ).

The objective of a partial Max-SAT problem is hence to find a propositional
valuation that satisfies all the hard clauses in H and that satisfies a maximal
number of the soft clauses in S. Note that a partial Max-SAT problem may
nevertheless admit several solutions.

We now describe of our encoding of the best k-excerpt problem into partial
Max-SAT. For every axiom α ∈ T , we introduce a fresh propositional variable
pα. Consequently, each solution v to our partial Max-SAT problem yields a best
excerpt that consists of all axioms α such that v(pα) = 1.

For a 〈A,Σ〉-subsumption justification j ∈ JT (A,Σ), we introduce the for-
mula Fj :=

∧
α∈j pα. Consequently, Fj is valued 1 iff. pα is valued 1, equivalently,

each axiom in j is selected to be contained in a best excerpt.
For the set of 〈A,Σ〉-subsumption justifications J = JT (A,Σ), we define

GJ :=
∨
j∈J Fj . For instance, let T = {α1, α2, α3, α4, α5}, J = {{α2, α3},

{α1, α4}}, and j = {α2, α3}. Then Fj = pα2 ∧ pα3 and GJ := (pα2 ∧ pα3) ∨
(pα1

∧ pα4
).

Definition 3 (Encoding of the Best Excerpt Problem). For every A ∈ Σ,
let JA(X,Σ) be the set of all the 〈A,Σ〉-subsumption justifications of a termi-
nology T , and let qA be a fresh propositional variable. The partial Max-SAT
problem for finding best k-excerpts of T w.r.t. Σ, denoted with Pk(T , Σ), is
defined as follows. We set Pk(T , Σ) := (Hk(T), Sk(T , Σ)), where

Hk(T) := Card(T , k) ∪
⋃

A∈Σ∩NC

Clauses(qA ↔ GJA),

Sk(T , Σ) := { qA | A ∈ Σ ∩ NC },

and Card(T , k) is the set of clauses specifying that at most k clauses from the
set { pα | α ∈ T } must be satisfied.

In the hard part of our partial Max-SAT problem, the clauses in Card(T , k)
specify that the cardinality of the resulting excerpt E ⊆ T must be equal to k.
We do not fix a certain encoding that should be used to obtain Card(T , k), but
we note that there exist several techniques that require a polynomial number of
clauses in k and in the size of T (see e.g. [24]). Moreover, for every concept name
A ∈ Σ, the variable qA is set to be equivalent to the formula GJ , i.e. qA will
be satisfied in a valuation iff the resulting excerpt will have the property that
the knowledge of A w.r.t. Σ in T is preserved (A ∈ PreservedΣ(T , E)). Finally,
the set Sk(T , Σ) of soft clauses specifies that a maximal number of qA must be
satisfied, enforcing that the resulting excerpt E will yield the smallest possible
number of difference witnesses (whilst obeying the constraint that |E| = k).

We can now show the correctness of our encoding, i.e. a best k-excerpt can
be obtained from any solution to the partial Max-SAT problem Pk(T , Σ).

Theorem 2 (Correctness & Completeness). Let T be a normalised ELH-
terminology, let Σ be a signature, and let 0 ≤ k ≤ |T |. It holds that E ⊆ T is a
best k-excerpt of T w.r.t. Σ iff there exists a solution v of the partial Max-SAT
problem Pk(T , Σ) such that E = {α ∈ T | v(pα) = 1 }.

Algorithm 1 shows how best excerpts are computed by using partial Max-
SAT encoding. In Line 7, the algorithm iterates over every concept name A
in Σ and the set of all subsumption justifications JT (A,Σ) are computed. The
formula GJA is computed next and stored in a set S. After the iteration over all

the concept names A in Σ is complete, the partial Max-SAT problem Pk(T , Σ) is
constructed with the help of the formulas GJA that are stored in S. Subsequently,
a solution v of Pk(T , Σ) is computed using a partial Max-SAT solver and the
best k-excerpt is returned by analysing which variables pα have been set to 1 in
the valuation v.

Our algorithm of computing subsumption justifications given below runs in
exponential time in the size of T and Σ. Hence, we have that Algorithm 1 overall
requires exponential time in the size of T and Σ in the worst case.

Algorithm 1: Computing Best k-Excerpts

1 function ComputeBestExcerpt(T , Σ, k)

2 if k = 0 then

3 return ∅
4 if k = |T | then
5 return T
6 S := ∅
7 for every A ∈ Σ ∩ NC do

8 Compute 〈A,Σ〉-subsumption justifications of T : JT (A,Σ)

9 Transfer 〈A,Σ〉-subsumption justifications of T to its propostional formula GJA
10 S := S ∪ {GJA}
11 Compute Pk(T , Σ) using S

12 Find the set of solutions V of Pk(T , Σ) using partial Max-SAT solver

13 return {α ∈ T | v(pα) = 1, v ∈ V }

4 Algorithms of Computing Subsumption Justifications

In the following subsections, we present algorithms for computing subsumer and
subsumee justifications. The algorithms use the following notion of a cover of a
set of sets. For a finite set S and a set T ⊆ 2S , we say that a set M ⊆ 2S is a cover
of T iff M ⊆ T and there existsM′ ∈M such thatM′ ⊆M for everyM∈ T. In
other words, a cover is a subset of T containing all sets from T that are minimal
w.r.t. (. Therefore, a cover of the set of all subsumption modules also contains
all subsumption justifications. We will use covers to characterise the output of
our algorithms to ensure that all justifications have been computed.

The algorithms expect the input terminologies to be normalised. Thus, we
have to normalise our terminologies first if they are not yet normalised (cf. Sec-
tion 2). The denormalisation function δT that we obtain from the process of
normalisation is then applied to the outputs of the algorithms to obtain the sub-
sumer and subsumee justifications of the original terminology. More precisely,
each subsumer or subsumee justification M = {β1, . . . , βn} of the normalised
terminology is transformed into the set { {γ} | γ ∈ δT (β1) } ⊗ . . . ⊗ {{γ} | γ ∈
δT (βn) } to obtain subsumer or subsumee justifications of the original termi-
nology, respectively. In what follows we assume that T , T1, and T2 are acyclic
normalised ELH-terminologies.

4.1 Computing Subsumer Justifications

The algorithm for computing subsumer justifications relies on the notion of a
subsumer simulation between terminologies from [7,18], which we introduce first.

Definition 4 (Subsumer Simulation). A relation S ⊆ sigNC(T1)× sigNC(T2)
is called a Σ-subsumer simulation from T1 to T2 if the following conditions hold:

(S→1) if (X1, X2) ∈ S, then for every B ∈ Σ with T1 |= X1 v B it holds that
T2 |= X2 v B; and

(S→2) if (X1, X2) ∈ S, then for each Y1 ./1 ∃r.Z1 ∈ T1 with T1 |= X1 v Y1,
T1 |= r v s, s ∈ Σ, ./1 ∈ {v,≡}, there exists Y2 ./2 ∃r′.Z2 ∈ T2 with
T2 |= X2 v Y2, ./2 ∈ {v,≡}, T2 |= r′ v s, and (Z1, Z2) ∈ S.

We write simΣ
→([T1, X1], [T2, X2]) iff there is a Σ-subsumer simulation S from T1

to T2 with (X1, X2) ∈ S; and in the case of T2 ⊆ T1 we write simT1,Σ→ (X1, X2).

A subsumer simulation conveniently captures the set of subsumers in the
following sense: If a Σ-subsumer simulation from T1 to T2 contains the pair
(X1, X2), then X2 entails w.r.t. T2 all subsumers of X1 w.r.t. T1 that are formu-
lated in the signature Σ. Formally, we obtain the following theorem from [18].

Theorem 3. It holds that simΣ
→([T1, X1], [T2, X2]) iff for all D ∈ ELHΣ: T1 |=

X1 v D implies T2 |= X2 v D.

Guided by the subsumer simulation notion, we can device our algorithm for
computing subsumer justifications. Algorithm 2 computes the subsumer justi-
fications for an acyclic normalised ELH-terminology T , a signature Σ, and a
concept name X. Lines 3–10 of the algorithm compute all 〈X,Σ〉-subsumption
modules of T . To ensure that the returned modules are minimal w.r.t. (, the
algorithm calls the function Minimise⊆(MX) in Line 11, which removes any set
in MX that is not minimal.

We illustrate Algorithm 2 with the following two examples. First example,
let T = {X v B, X v Y, Y v B} and Σ = {B}. Consider the execution of
Cover→(T , X,Σ). In Line 4, M→X is set to JustT (X v B), where JustT (X v
B) = {{X v B}, {X v Y, Y v B}}. Since there are no axioms of the form
Y v ∃r.Z ∈ T or Y ≡ ∃r.Z ∈ T , the lines 5–10 have no effect. Finally, the
algorithm returns M→X in Line 11.

For the second example, let T = {α1, α2, α3, α4, α5} and Σ = {A,B, s},
where α1 = X v ∃r.A, α2 = X v ∃r.B, α3 = X v ∃r.Y , α4 = Y ≡ A u B,
and α5 = r v s. We consider again the execution of Cover→(T , X,Σ). We
proceed to Line 5 as there are no concept names in Σ entailed by X w.r.t. T .
However, the concepts ∃r.A, ∃r.B and ∃r.Y are entailed by X w.r.t. T . It holds
that simT ,Σ→ (Z,Z ′) for every (Z,Z ′) ∈ {(A,A), (B,B), (Y, Y), (A, Y), (B, Y)},
whereas simT ,Σ→ (Z,Z ′) does not hold for any (Z,Z ′) ∈ {(A,B), (B,A), (Y,A),
(Y,B)}. Therefore, for every Z ∈ {A,B, Y } the recursive call Cover→(T , Σ, Z)
is made in Line 8. The following sets are computed in lines 6–10: M→A = {∅},
M→B = {∅}, and M→Y = {{α4}} as well as

M→∃s.A = ({α1, α5} ⊗M→A) ∪ ({α3, α5} ⊗M→Y) = {{α1, α5}, {α3, α4, α5}}
M→∃s.B = ({α2, α5} ⊗M→B) ∪ ({α3, α5} ⊗M→Y) = {{α2, α5}, {α3, α4, α5}}
M→∃s.Y = {α3, α5} ⊗M→Y = {{α3, α4, α5}}
M→X = M→∃r.A ⊗M→∃s.B ⊗M→∃r.Y = {{α3, α4, α5}}.

Algorithm 2: Computing a Cover of all Sub-

sumer Justifications

1 function Cover→ (T , X,Σ)

2 M→X = {∅}
3 for every B ∈ Σ ∩ NC such that

T |= X v B do

4 M→X := M→X ⊗ JustT (X v B)

5 for every Y ./1 ∃r.Z ∈ T (./1∈ {v,≡})
and s ∈ Σ ∩ NR such that T |= X v Y and

T |= r v s do

6 M→∃s.Z := ∅
7 for every Y ′ ./2 ∃r′.Z′ ∈ T (./2∈ {v,≡})

such that T |= X v Y ′, T |= r′ v s, and
simT ,Σ→ (Z,Z′) do

8 M→Z′ := Cover→(T , Z′, Σ)

9 M→∃s.Z := M→∃r.Z ∪
(
{{Y ′ ./2

∃r′.Z′}} ⊗M→Z′ ⊗
JustT (X v Y ′)⊗JustT (r′ v s)

)
10 M→X := M→X ⊗M→∃s.Z
11 return Minimise⊆(M→X)

Algorithm 3: Computing a Cover of all Sub-

sumee Justifications – Conjunctive Case

1 function Coveru←(T1, X1, Σ, T2, X2)

2 let αX1 := X1 ≡ Y1 u . . . u Ym ∈ T1
3 M←(X1,X2)

:= ∅
4 for Γ ∈ DefForestuT2(X2) do

5 Let

δΓ := {def uT2(X ′) | X ′ ∈ leaves(Γ)∩ def uT2 }
6 M←Γ := {Γ}
7 for X ′2 ∈ leaves(Γ) do

8 M←X′
2

:= ∅

9 for every X ′1 ∈ non-conjT1(X1) do

10 if simΣ
←([T1, X ′1], [T2 \ δΓ , X ′2]) then

11 M←X′
2

:= M←X′
2
∪

Cover←(T1, X ′1, Σ, T2 \ δΓ , X ′2)

12 M←Γ := M←Γ ⊗M←X′
2

13 M←(X1,X2)
:= M←(X1,X2)

∪M←Γ
14 return M←(X1,X2)

Algorithm 4: Computing a Cover of all Sub-

sumee Justifications

1 function Cover←(T1, X1, Σ, T2, X2)

2 if X1 is not Σ-entailed w.r.t. T1 then

3 return {∅}
4 M←(X1,X2)

:= CoverNC← (T1, X1, Σ, T2, X2)

5 if X1 is not complex Σ-entailed in T1 then

6 return M←(X1,X2)

7 if X1 ≡ ∃r.Y ∈ T1, and r, Y are Σ-entailed

w.r.t. T1 then

8 M←(X1,X2)
:=

M←(X1,X2)
⊗Cover∃←(T1, X1, Σ, T2, X2)

9 else if X1 ≡ Y1 u . . . u Ym ∈ T1 then

10 M←(X1,X2)
:=

M←(X1,X2)
⊗Coveru←(T1, X1, Σ, T2, X2)

11 return Minimise⊆(M←(X1,X2)
)

Algorithm 5: Computing a Cover of all Sub-

sumee Justifications – Local Case

1 function CoverNC← (T1, X1, Σ, T2, X2)

2 M←(X1,X2)
= {∅}

3 for every B ∈ Σ ∩ NC such that

T1 |= B v X1 do

4 M←(X1,X2)
:= M←(X1,X2)

⊗ JustT2(B v X2)

5 return M←(X1,X2)

Algorithm 6: Computing a Cover of all Sub-

sumee Justifications – Existential Case

1 function Cover∃← (T1, X1, Σ, T2, X2)

2 Let αX1 := X1 ≡ ∃r.Y1 ∈ T1
3 M←(X1,X2)

:= {max-tree uT2(X2)}
4 for every s ∈ Σ ∩ NR such that T1 |= s v r

do

5 M←(X1,X2)
:= M←(X1,X2)

⊗ JustT2(s v r)
6 for every X ′2 ∈ non-conjT2(X2) do

7 Let αX′
2

:= X ′2 ≡ ∃s.Y ′2 ∈ T2
8 M←Y ′

2
:= Cover←(T1, Y1, Σ, T2, Y ′2)

9 M←(X1,X2)
:= M←(X1,X2)

⊗ {{αX′
2
}} ⊗M←Y ′

2

10 return M←(X1,X2)

Fig. 3: Algorithms of computing subsumer and subsumee justifications

Finally, Cover→(T , X,Σ) returns Minimise⊆(M→X) = {{α3, α4, α5}} in Line 11.
The following theorem shows that Algorithm 2 indeed computes the set of

subsumer modules, thus producing a cover of subsumer justifications.

Theorem 4. Let M→X := Cover→(T , X,Σ). Then M→X is a cover of the set of
〈X,Σ〉-subsumer justifications of T .

Observe that Cover→(T , X,Σ) may be called several times during the ex-
ecution of Algorithm 2. The algorithm can be optimised by caching the return
value of the first execution, and retrieving it from memory for subsequent calls.

4.2 Computing Subsumee Justifications

The algorithm for computing subsumee justifications relies on the notion of sub-
sumee simulation between terminologies [7, 18]. First we present some auxiliary
notions for handling conjunctions on the left-hand side of subsumptions.

We define for each concept name X a so-called definitorial forest consisting of
sets of axioms of the form Y ≡ Y1 u . . .uYn which can be thought of as forming
trees. Any 〈X,Σ〉-subsumee justification contains the axioms of a selection of
these trees, i.e., one tree for every conjunction formulated over Σ that entails X
w.r.t. T . Formally, we define a set of a DefForestuT (X) ⊆ 2T to be the smallest set
closed under the following conditions: ∅ ∈ DefForestuT (X); {α} ∈ DefForestuT (X)
for α = X ≡ X1 u . . . u Xn ∈ T ; and Γ ∪ {α} ∈ DefForestuT (X) for Γ ∈
DefForestuT (X) with Z ≡ Z1 u . . . u Zk ∈ Γ and α = Zi ≡ Z1

i u . . . u Zni ∈ T .
Given Γ ∈ DefForestuT (X), we set leaves(Γ) := sig(Γ) \ {X ∈ sig(C) | X ≡
C ∈ Γ } if Γ 6= ∅; and {X} otherwise. We denote the maximal element of
DefForestuT (X) w.r.t. ⊆ with max-tree uT (X). Finally, we set non-conjT (X) :=
leaves(max-tree uT (X)).

For example, let T = {α1, α2, α3}, where α1 = X ≡ Y uZ, α2 = Y ≡ Y1uY2,
and α3 = Z ≡ Z1 u Z2. Then DefForestuT (X) = {∅, {α1}, {α1, α2}, {α1, α3},
{α1, α2, α3}}. We have that leaves({α1, α3}) = {Y,Z1, Z2}, max-tree uT (X) =
{α1, α2, α3}, and non-conjT (X) = {Y1, Y2, Z1, Z2}.

We say that X ∈ NC is Σ-entailed w.r.t. T iff there exists C ∈ ELΣ with
T |= C v X. We say that r ∈ NR is Σ-entailed w.r.t. T iff there exists s ∈ Σ∩NR

with T |= s v r. Moreover, we say that X is complex Σ-entailed w.r.t. T iff for
every Y ∈ non-conjT (X) one of the following conditions holds:

(i) there exists B ∈ Σ such that T |= B v Y and T 6|= B v X;
(ii) there exists Y ≡ ∃r.Z ∈ T such that r and Z are both Σ-entailed in T .

For example, let T = {X ≡ X1 uX2, B1 v X1, X2 ≡ ∃r.Z, B2 v Z, s v r}.
We have that non-conjT (X) = {X1, X2}, then r is Σ-entailed w.r.t. T ; X is
complex Σ-entailed w.r.t. T for Σ = {B1, B2, s}; but X is not complex Σ′-
entailed w.r.t. T , where Σ′ ranges over {B1, B2}, {B1, s}, {B2, s}. Additionally,
X is not complex Σ-entailed w.r.t. T ∪ {B1 v X}.

Definition 5 (Subsumee Simulation). We say that a relation S ⊆ sigNC(T1)×
sigNC(T2) is a Σ-subsumee simulation from T1 to T2 iff the following conditions
are satisfied:

(S←1) if (X1, X2) ∈ S, then for every B ∈ Σ with T1 |= B v X1 it holds that
T2 |= B v X2;

(S←2) if (X1, X2) ∈ S and X1 ≡ ∃r.Y1 ∈ T1 such that T1 |= s v r, s ∈ Σ and
Y1 is Σ-entailed in T1, then for every X ′2 ∈ non-conjT2(X2) there exists
X ′2 ≡ ∃r′.Y2 ∈ T2, such that (Y1, Y2) ∈ S and T2 |= s v r′;

(S←3) if (X1, X2) ∈ S and X1 ≡ Y1 u . . . u Yn ∈ T1, then for every X ′2 ∈
non-conjT2(X2) there exists X ′1 ∈ non-conjT1(X1) with (X ′1, X

′
2) ∈ S.

We write simΣ
←([T1, X1], [T2, X2]) iff there exists a Σ-subsumee simulation S

from T1 to T2 with (X1, X2) ∈ S. Moreover, we write simT1,Σ← (X1, X2) iff there
exists a Σ-subsumee simulation S from T1 to T1 with (X1, X2) ∈ S.

Analogously to subsumer simulations, a subsumee simulation captures the
set of subsumees as it is made precise in the following theorem from [18].

Theorem 5. It holds that simΣ
←([T1, X1], [T2, X2]) iff for every D ∈ ELHΣ:

T1 |= D v X1 implies T2 |= D v X2.

Using the notion of a subsumee simulation, we can device Algorithm 4 for
computing a cover of the subsumee justifications for a given ELH-terminology
T , a concept name X, and a signature Σ. The correct function call for obtaining
the 〈X,Σ〉-subsumee justifications of T is Cover←(T , X,Σ, T , X). Note that
Algorithm 3, Algorithm 5, and Algorithm 6 are called as subroutines in Line 4, 8
and 10 in Algorithm 4. The four different parameters for Algorithm 4 are needed
due to the recursive calls in Algorithm 3 (Line 11) and Algorithm 6 (Line 8).

We illustrate Algorithm 4 with the following example. Let T = {X ≡
∃r.Y, Y ≡ ∃s.Z, Z ≡ A u Z ′, A v B, B v Z ′, Z ′ v A} be an EL-terminology,
and let Σ = {A,B, r, s} be a signature. It can easily be seen that T is normalised.

Consider the execution of Cover←(T , X,Σ, T , X). As X is (complex) Σ-

entailed, CoverNC
← (T , X,Σ, T , X) is called in Line 4. The for-loop in lines 3–4

of Algorithm 5 does not apply as T 6|= A v X and T 6|= B v X. We obtain

CoverNC
← (T , X,Σ, T , X)={∅} backtracking to Line 4 of Cover←(T , X,Σ, T , X).

The if-statement in Line 7 applies as T contains an axiom of the form X ≡ ∃r.Y ,
where X and r are each Σ-entailed. We proceed with Cover∃←(T , X,Σ, T , X)
in Line 8. We obtain M←(X,X)

:= {max-tree uT (X)} = {∅} in Line 3 of Algo-

rithm 6. Since non-conjT (X) = {X} and X ≡ ∃r.Y ∈ T , the recursive call
Cover←(T , Y,Σ, T , Y) in Line 8 of Algorithm 6 is made.

Then, in Line 8 of Algorithm 4, Cover∃←(T , Y,Σ, T , Y) is called as Y is
complex Σ-entailed w.r.t. T , Y ≡ ∃s.Z ∈ T , and s, Z are each Σ-entailed.

Similar to Cover∃←(T , X,Σ, T , X), the execution of Cover∃←(T , Y,Σ, T , Y)
invokes Cover←(T , Z,Σ, T , Z) from Line 8 of Algorithm 6.

As Z is Σ-entailed w.r.t. T , we have that CoverNC
← (T , Z,Σ, T , Z) is ex-

ecuted. The for-loop in Line 3 of Algorithm 5 applies as T |= A v Z and
T |= B v Z so that we have M←Z := JustT (A v Z) ⊗ JustT (B v Z), where
JustT (A v Z) = JustT (B v Z) = {Z ≡ A u Z ′, A v B, B v Z ′, Z ′ v A}.
This finishes the call CoverNC

← (T , Z,Σ, T , Z), and we backtract to Line 4 of
Cover←(T , Z,Σ, T , Z). As Z is not complex Σ-entailed, this finishes the call
Cover←(T , Z,Σ, T , Z) with M←Z = {Z ≡ A u Z ′, A v B, B v Z ′, Z ′ v A}.

Ontologies Snomed CT NCI

(|Σ ∩ NC|, |Σ ∩ NR|) (10,10) (30,10) (10,10) (30,10)
Nb. of all Subsumption Justifications 1.0 / 19.0 / 1.0 / 0.9 1.0 / 1328.0 / 1.0 / 10.7 1.0 / 136.0 / 1.0 / 3.5 1.0 / 7008.0 / 1.0 / 41.8
Card. of a Subsumption Justification 0.0 / 18.0 / 0.0 / 1.7 0.0 / 15.0 / 0.0 / 3.2 0.0 / 15.0 / 0.0 / 3.2 0.0 / 27.0 / 0.0 / 8.1

Success Rate 88.7% 82.4% 84.8% 91.7%
Computation Time (s) 0.2 / 519.7 / 0.4 / 59.2 0.7 / 576.3 / 1.6 / 28.5 0.2 / 472.4 / 1.3 / 66.9 0.2 / 577.3 / 7.6 / 97.0

Table 1: The statistics of experiments on computing all subsumption justifications for signatures
generated at random, 1000 signatures of each size (minimal / maximal / median / standard deviation)

Sub-Task JUST Reasoner Simulation Check others

Percentage (%) 94.60 1.79 1.57 2.04

Table 2: Percentage of computation time consumed by sub-task of the algorithm for computing
subsumption justifications

We backtrack to Line 8 of Cover∃←(T , Y,Σ, T , Y) and set M←Y := M←Y ⊗
{{Y ≡ ∃s.Z}} ⊗ M←Z which yields M←Y = {{Y ≡ ∃s.Z, Z ≡ A u Z ′, A v
B, B v Z ′, Z ′ v A}}. This finishes the call Cover∃←(T , Y,Σ, T , Y) and it
backtracks to Line 8 and ends the call Cover←(T , Y,Σ, T , Y). We set M←X :=

M←X⊗{{X ≡ ∃r.Y }}⊗M←Y in Line 9 of Algorithm 6 for Cover∃←(T , X,Σ, T , X).

Thus Cover∃←(T , X,Σ, T , X) returns M←X = {{X ≡ ∃r.Y, Y ≡ ∃s.Z, Z ≡
A u Z ′, A v B, B v Z ′, Z ′ v A}} and we backtrack to Line 10 of Algorithm 4.
Finally, all sets that are not minimal w.r.t. (are removed from M←X in Line 11,
which ends the execution of Cover←(T , X,Σ, T , X).

The following theorem shows that Algorithm 4 indeed computes a cover of
the set of subsumee modules. Thus every subsumee justification is guaranteed
to be among the computed sets of axioms.

Theorem 6. Let M←X := Cover←(T , X,Σ, T , X). Then M←X is the set of all
〈X,Σ〉-subsumee justifications of T .

5 Evaluation

We have implemented our algorithms for computing subsumption justifications,
minimal (basic) modules, and best excerpts in Java. The performance of the
implementation has been evaluated using the EL-fragment of two prominent
biomedical ontologies: Snomed CT (version Jan 2016), a terminology consist-
ing of 317 891 axioms, and NCI (version 16.03d),3 a terminology containing
165 341 axioms. To compute the sets JustT (α), we deployed the SAT-based tool
BEACON [1], which uses an efficient group-MUS enumerator. To solve our par-
tial Max-SAT problem, we made use of the system Sat4j [16]. All experiments
were conducted with a timeout of 10 minutes on machines equipped with an
Intel Xeon Core 4 Duo CPU running at 2.50 GHz and with 64 GiB of RAM.

Computation of all Subsumption Justifications Table 1 shows the results ob-
tained for computing all subsumption justifications. The first row indicates the
ontology used in each experiment. The experiments are divided into four cate-
gories according to the numbers of concept and role names included in an input
signature, as specified in the second row. For each category, we generated 1000

3 http://evs.nci.nih.gov/ftp1/NCI_Thesaurus

0 100 200 800 900
1000

1100
1200

1300
1400

1500
1600

1700
1800

1900
2000

2100
2200

Input Ontology Size

10 1

100

101

102
Ti

m
e

(s
)

Method by Subsumption Justification
Method by Module Search Tree

Fig. 4: Time comparison of computing minimal
modules by our method (subsumption justifica-
tion based approach, cf. Theorem 1) and the ex-
isting module search tree based approach [5] over
different sized input ontologies

500
1000

1500
2000

2500
3000

Signature ID

0

20

40

60

80

100

120

140

N
um

be
r

of
 A

xi
om

s

#Preserved (IR) = 1
#Preserved (IR) = 2

 Module
#Preserved (best) = 1
#Preserved (best) = 2

Fig. 5: Comparison of the best excerpts (our ap-
proach) and the approximating excerpts (IR ap-
proach [4]) over 2500 signatures, each of which
consists of a concept name from Snomed CT and
its TOP-concept named SNOMED CT Concept

random signatures and computed the corresponding subsumption justifications
for each concept name in the signature. Row 3 shows that multiple subsumption
justifications can exist in real-world ontologies, e.g., there are 1328 subsumption
justifications for a random signature consisting of 30 concept and 10 role names
in Snomed CT. Meanwhile, Row 4 reports the cardinality of subsumption jus-
tifications, e.g., the largest one having 27 axioms for a signature of 30 concept
and 10 role names from NCI. Row 5 shows that the subsumption justifications
for more than 82.4% of random signatures can be computed within 10 mins,
whereas the statics of the actual computation times is given in Row 6. More-
over, Table 2 details how the computation time was spent on different sub-tasks
which determined the bottleneck of our tool. Indeed, 94.6% of the computation
time was spent by BEACON on computing all justifications for concept name
inclusions. Therefore, a considerable boost in performance of our tool can be
expected by precomputing such justifications.

Computation of all Minimal Basic Modules We compare our approach for com-
puting all minimal basic modules with the search algorithm proposed in [5] in
terms of computation time, as depicted in Figure 4. The x-axis stands for the sizes
of input ontologies. To obtain different sized input ontologies, we used random
signatures to extract their MEX-modules [14], yielding 328 sub-ontologies of sizes
ranging from 14 to 2 271. Our method (red squares) was generally about 10 times
faster than the search-based approach (blue triangles) except for 11 small sized
input ontologies. This indicates that our approach is suitable for computing all
minimal basic modules, esp. for large ontologies.

Computation of Best Excerpts We compare the size of locality based modules
with the number of axioms in IR-excerpts [4] and best excerpts needed to pre-
serve the same amount of knowledge. We denote with #PreservedΣ(IR) = n
and #PreservedΣ(best) = n, for n ∈ {1, 2}, the minimal number of axioms
needed to preserve the knowledge of n concept names w.r.t. the signature Σ
by an IR-excerpt and best excerpt, respectively. In this experiment, instead of

using random signatures, we consider a scenario where a user searches for sub-
ontologies of Snomed CT related to a particular concept name. We compute
2 500 different signatures each consisting of a concept name related to diseases,
the TOP-concept and all role names of Snomed CT.

In Figure 5, these 2 500 signatures are ranked increasingly by the sizes of
their ⊥>∗-local modules (the black line) along the x-axis. The y-axis represents
the number of axioms in the module and excerpts for a signature. The red
(resp. green) line presents the sizes of best excerpts that preserve the knowl-
edge for one (resp. two) concept names, i.e., #PreservedΣ(best) = 1 (resp.
#PreservedΣ(best) = 2); similarly, the blue (resp. orange) dots for IR-excerpts.
We can see that the red line is below all blue dots and the green line is below
all orange dots. Consequently, the best excerpts are always smaller than IR-
based excerpts for preserving same degree of information. In other words, best
excerpts provide a more concise way to zoom in on an ontology. Our experiment
also shows that our Max-SAT encoding works efficiently. After computing the
subsumption justifications for all concept names in a signature, it only takes
0.15 s on average to compute best excerpts.

6 Conclusion

We have presented algorithms of computing subsumption justifications, minimal
modules and best excerpts for an acyclic ELH-terminology and a signature.
Minimal modules and best excerpts can be applied in the ontology selection
process and they can be used for ontology summarization and visualization. We
have conducted an evaluation with large biomedical ontologies that demonstrates
the viability of our algorithms in practice. It turns out that in most cases the
set of all minimal modules can be computed faster than with another algorithm
based on search [5]. Best excerpts can be used to evaluate the quality of ontology
excerpts based on Information Retrieval or of other (incomplete) module notions.
We expect that the algorithms can be extended to deal with cyclic terminologies,
domain and range restrictions in order to be applicable for, e.g., linked data
summarization by providing small sized basic modules.

References

1. Arif, M.F., Menćıa, C., Ignatiev, A., Manthey, N., Peñaloza, R., Marques-Silva, J.:
BEACON: an efficient sat-based tool for debugging EL+. In: Proc. of SAT’16, pp.
521–530 (2016)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.:
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, 2nd edn. (2010)

3. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic

EL+. In: Proc. of KI’07, pp. 52–67 (2007)
4. Chen, J., Ludwig, M., Ma, Y., Walther, D.: Towards extracting ontology excerpts.

In: Proc. of KSEM’15, pp. 78–89 (2015)
5. Chen, J., Ludwig, M., Walther, D.: On computing minimal EL-subsumption mod-

ules. In: Proc. of WOMoCoE’16 (2016)

6. Del Vescovo, C., Peñaloza, R.: Dealing with ontologies using cods. In: Proc. of
DL’14, pp. 157–168 (2014)

7. Ecke, A., Ludwig, M., Walther, D.: The concept difference for EL-terminologies
using hypergraphs. In: Proc. of DChanges’13 (2013)

8. Fu, Z.: Extending the Power of Boolean Satisfiability: Techniques and Applications.
Ph.D. thesis, Princeton University (2007)

9. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies:
Theory and practice. JAIR 31(1), 273–318 (2008)

10. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL
DL entailments. In: Proc. of ISWC’07 & ASWC’07, pp. 267–280 (2007)

11. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.A.: Debugging unsatisfiable classes
in OWL ontologies. J. Web Sem. 3(4), 268–293 (2005)

12. Konev, B., Ludwig, M., Walther, D., Wolter, F.: The logical difference for the
lightweight description logic EL. JAIR 44, 633–708 (2012)

13. Konev, B., Lutz, C., Walther, D., Wolter, F.: Semantic modularity and module
extraction in description logics. In: Proc. of ECAI’08, pp. 55–59 (2008)

14. Konev, B., Lutz, C., Walther, D., Wolter, F.: Model-theoretic inseparability and
modularity of description logic ontologies. Artificial Intelligence 203, 66–103 (2013)

15. Kontchakov, R., Pulina, L., Sattler, U., Schneider, T., Selmer, P., Wolter, F., Za-
kharyaschev, M.: Minimal module extraction from DL-lite ontologies using qbf
solvers. In: Proc. of DL’09, pp. 836–841 (2009)

16. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation 7(2-3), 59–64 (2010)

17. Ludwig, M.: Just: a tool for computing justifications w.r.t. ELH ontologies. In:
Proc. of ORE’14, pp. 1–7 (2014)

18. Ludwig, M., Walther, D.: The logical difference for ELHr-terminologies using hy-
pergraphs. In: Proc. of ECAI’14, pp. 555–560 (2014)

19. Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the
description logic EL. Journal of Symbolic Computation 45(2), 194–228 (2010)

20. Mart́ın-Recuerda, F., Walther, D.: Fast modularisation and atomic decomposition
of ontologies using axiom dependency hypergraphs. In: Proc. of ISWC’14, pp. 49–
64 (2014)

21. Romero, A.A., Kaminski, M., Grau, B.C., Horrocks, I.: Module extraction in ex-
pressive ontology languages via datalog reasoning. JAIR 55, pp. 499–564 (2016)

22. Sattler, U., Schneider, T., Zakharyaschev, M.: Which kind of module should I
extract? In: Proc. of DL’09 (2009)

23. Schlicht, A., Stuckenschmidt, H.: Criteria-based partitioning of large ontologies.
In: Proc. of K-CAP’07, pp. 171–172 (2007)

24. Sinz, C.: Towards an optimal cnf encoding of boolean cardinality constraints. In:
Proc. of CP’05), pp. 827–831 (2005)

25. Troullinou, G., Kondylakis, H., Daskalaki, E., Plexousakis, D.: RDF digest: Effi-
cient summarization of RDF/S kbs. In: Proc. of ESWC’15, pp. 119–134 (2015)

26. Vescovo, C.D., Gessler, D., Klinov, P., Parsia, B., Sattler, U., Schneider, T.,
Winget, A.: Decomposition and modular structure of bioportal ontologies. In: Proc.
of ISWC’11, pp. 130–145 (2011)

27. Vescovo, C.D., Parsia, B., Sattler, U.: Logical relevance in ontologies, In: Proc. of
DL’12 (2012)

28. Vescovo, C.D., Parsia, B., Sattler, U., Schneider, T.: The modular structure of an
ontology: Atomic decomposition, In: Proc. of IJCAI’11, pp. 2232–2237. (2011)

29. Zhang, X., Cheng, G., Qu, Y.: Ontology summarization based on RDF sentence
graph. In: Proc. of WWW’07, pp. 707–716 (2007)

30. Zhou, Z., Qi, G., Suntisrivaraporn, B.: A new method of finding all justifications
in OWL 2 EL. In: Proc. of WI’13, pp. 213–220 (2013)

