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Abstract. Automated acquisition (learning) of ontologies from data has attracted
research interest because it can complement manual, expensive construction of
ontologies. We investigate the problem of General Terminology Induction in
OWL, i.e. acquiring general, expressive TBox axioms (hypotheses) from an ABox
(data). We define novel measures designed to rigorously evaluate the quality of
hypotheses while respecting the standard semantics of OWL. We propose an in-
formed, data-driven algorithm that constructs class expressions for hypotheses
in OWL and guarantees completeness. We empirically evaluate the quality mea-
sures on two corpora of ontologies and run a case study with a domain expert to
gain insight into applicability of the measures and acquired hypotheses. The re-
sults show that the measures capture different quality aspects and not only correct
hypotheses can be interesting.

1 Introduction

In computer science, an ontology is a machine-processable representation of knowledge
about some domain. Ontologies are encoded in ontology languages, such as the expres-
sive Web Ontology Language [11] (OWL) based on Description Logics [3] (DLs). An
ontology is a set of logical statements, called axioms. Axioms can be universal state-
ments or specific facts. The set of universal statements of an ontology is called the
TBox and represents schema-level conceptual relationships, or terminology. The set of
facts of an ontology is called the ABox and represents instance-level class and prop-
erty assertions, or data. Besides simple “SubClassOf” relationships and class defini-
tions, OWL allows for encoding complex TBox axioms such as general class inclusions
(GCIs) where complex class expressions occur on both sides, e.g. ∃hasChild.> v
Mother t Father states that “having a child implies being a mother or father”.

Since manual engineering of TBoxes is a difficult, time-consuming task, automated
acquisition of them from data has attracted research attention. In this paper, we inves-
tigate learning expressive TBox axioms (hypotheses) from a given ABox (data). Our
contributions are as follows:

– definitions of novel quality measures that can rigorously evaluate expressive GCIs
in OWL respecting its semantics;

– an informed, bottom-up algorithm that efficiently constructs complex class expres-
sions (and thus GCIs) in OWL and guarantees completeness;



– an empirical analysis of the relationships between the quality measures via mutual
correlations;

– the design and execution of a case study which confirms the ability of our approach
to generate three different kinds of interesting hypotheses and gains insight into
relationships of the measures with hypothesis validity and interestingness.

2 Preliminaries

We assume the reader to be familiar with DLs [3] and OWL [11]. We denote an ontology
as O := T ∪ A, where T and A are its TBox and ABox, respectively. An axiom
is denoted as α or η. A general class inclusion (GCI) is an axiom of the form C v
D, where C and D are (possibly complex) class expressions, and corresponds to a
“SubClassOf” axiom in OWL. An object property inclusion (OPI) is an axiom of the
form R v S, where R and S are (possibly complex) object property expressions, and
corresponds to a “SubObjectPropertyOf” axiom in OWL. A hypothesis is a TBox axiom
(GCI or OPI). An ABox axiom, called fact, is an assertion of the form C(a) or R(a, b),
where C is a class expression, R an object property, a, b individuals. The set of all
terms occurring in an ontology O is called the signature of O and denoted as Õ (T̃ is
the signature of T ). We denote the set of all individuals occurring in O as in(O). We
use |= to denote the usual entailment relation and ≡ to denote logical equivalence.
The function `(C) returns the usual syntactic length [13, 3] of a class expression C, e.g.
`(∃R.A u ∀R.(¬B t ∃S.B)) = 9; `(C v D) = `(C) + `(D); `(O) =

∑
α∈O `(α).

3 Related Work

There are different approaches to acquiring TBox axioms from data. The common ap-
proach is Class Description Learning [5, 14, 7, 16, 15, 18] (CDL) which aims at inducing
a description (class expression) C of a given class name A using a set of positive and
negative training examples. Statistical Schema Induction [22] uses Association Rules
Mining (ARM) to generate and evaluate candidate axioms using off-the-shelf quality
measures [10]. BelNet [23] learns a Bayesian Network from data and uses its structure
to generate the corresponding TBox. In contrast to CDL, the last two approaches are not
restricted to learning only class descriptions and can generate GCIs with complex class
expressions on both sides. However, they require specifying shapes of generated axioms
and have so far been considerably limited in expressivity, i.e. richness of knowledge that
generated axioms are able to capture. Moreover, they tend to view a given ABox (data)
under the Closed Word Assumption (CWA) or some form of it [9]. This is unnatural
for the standard semantics of OWL allowing for the Open World Assumption (OWA),
i.e. incomplete information. In addition, the approaches usually ignore the given TBox
while generating candidate axioms.

Like ARM-based approaches, we focus on learning GCIs rather than class expres-
sions. The rationale is that the former can express arbitrary implications, e.g. “people
who pay dog tax also buy dog food”, while the latter cannot since it captures common-
alities in the given group of individuals (as positive or negative examples), e.g. “people
who pay dog tax”. Thus, the goals of learning GCIs and learning class expressions are



rather different. To draw further similarities between our approach and ARM, we can
view an individual as a transaction that contains class expressions as its items. A class
expression is included in the transaction if and only if the individual is an instance of
that class expression. However, in contrast to items in ARM, class expressions can be
logically related to each other (in light of the TBox) and it can be unknown whether
a class expression is in the transaction or not because of the OWA. In addition, unlike
items in ARM, class expressions are not usually known in advance and naive generation
of them is infeasible in all but trivial cases.

4 Advanced Evaluation of Hypotheses

A candidate axiom, or hypothesis, can be evaluated by different quality criteria. One can
use the usual axiom length and depth [4, 13, 3] to evaluate readability. As we suggested
in [20], logical quality can be evaluated by consistency, informativeness, and logical
strength (weakness): an axiom α is called consistent with an ontology O if O ∪ {α}
is consistent; α is called informative for a TBox T if T 6|= α; α is said to be weaker
than another axiom α′ if α′ |= α and α 6|= α′. Statistical quality can be evaluated by
fitness and braveness [20]. Intuitively, fitness counts the number of facts entailed by a
hypothesis and braveness counts the number of “guesses” of a hypothesis.

Definition 1 (fitness, braveness). Let O := T ∪ A be an ontology, C a set of class
expressions with their negations included, α a GCI consistent with O. Then, the fitness
and braveness of α are defined as follows:

fit(α,O,C) := dlen(π(O,C), T )− dlen(π(O,C), T ∪ {α})
bra(α,O,C) := dlen(ψ(α,O,C), O)

where π(O,C) := {C(a) | O |= C(a), C ∈ C, a ∈ in(O)},1 ψ(α,O,C) :=
π(O ∪ {α}, C) \ π(O,C), dlen(B,O) := min{`(B′) | B′ ∪ O ≡ B ∪O}.

4.1 New Logical Measures

To capture further aspects of logical quality, we propose new logical measures: dis-
similarity and complexity. These are numeric logical measures measures (compare to
consistency, informativeness, and logical strength mentioned above).

Dissimilarity Given a GCI C v D, one can measure how “dissimilar” C andD are
with respect to the TBox. Intuitively, the more dissimilar they are, the more “surprising”
the axiom is for the TBox. We adapt the class similarity measure from [2].

Definition 2 (Dissimilarity). Let O := T ∪ A be an ontology, C a set of class ex-
pressions, subs(C,C, T ) := {C ′ ∈ C ∪ {C} | T |= C v C ′}. The dissimilarity of
α := C v D is defined as follows:

dsim(α,C, T ) := 1− |subs(C,C, T ) ∩ subs(D,C, T )|
|subs(C,C, T ) ∪ subs(D,C, T )|

.

1 It is the result of retrieving instances of every C ∈ C.



Informally, given a TBox T , the dissimilarity of a GCI C v D measures how many
common subsumers the class expressions C and D have in a set C of class expressions.

Example 1. Consider the following TBox:

T := {C1 v B1, B1 v A1, A1 v A,
C2 v B2, B2 v A2, A2 v A}.

Given C := T̃ (all classes of T ), the dissimilarity of α1 := C1 v C2 is higher than the
one of α2 := A1 v C2:

dsim(α1,C, T ) = 1− |{A}|
|{A,A1, B1, C1, A2, B2, C2}|

=
6

7

dsim(α2,C, T ) = 1− |{A}|
|{A,A1, A2, B2, C2}|

=
4

5

The dissimilarity of an OPI is defined analogously and omitted for the sake of
brevity. The minimal (maximal) value of dissimilarity implies that all subsumers are
the same (different). Dissimilarity is a symmetric measure, i.e.

dsim(C v D, C, T ) = dsim(D v C, C, T ).

Complexity Given an axiom α, we can compare the complexity of the new theory
T ∪ {α} with the complexity of the old theory T by quantifying how many new entail-
ments the new theory has. As the set of new entailments is infinite in general, we only
consider a finite subset of them.

Definition 3 (Complexity). Let O := T ∪ A be an ontology, C a set of class ex-
pressions. The complexity of α := C v D is defined as follows: com(α,C, T ) :=
|{η | T ∪ {α} |= η, T 6|= η, η = C1 v C2, C1, C2 ∈ C}|.

Thus, we only count new entailments that are subsumptions between class expres-
sions from a fixed set C. The complexity of an OPI is defined analogously and omitted
for the sake of brevity. In contrast to dissimilarity, complexity is asymmetric. They are
rather independent measures, see Example 2.

Example 2. Let us calculate the complexity of the axioms α1 and α2 from Example 1:

com(α1,C, T ) = |{C1 v C2, C1 v B2, C1 v A2}| = 3,

com(α2,C, T ) = |{C1 v C2, C1 v B2, C1 v A2,

B1 v C2, B1 v B2, B1 v A2,

A1 v C2, A1 v B2, A1 v A2}| = 9.

Thus, α1 has lower complexity than α2 but higher dissimilarity. In addition, consider
the axiom α3 := B1 u C2 v A1: com(α3,C, T ) = 0 since T |= α3 but

dsim(α3,C, T ) = 1− |{A,A1}|
|{A,B1, A1, C2, B2, A2}|

=
2

3
.



4.2 New Statistical Measures

We propose new statistical measures that capture further aspects of statistical quality
while respecting the standard semantics of OWL and given TBox. They are based on
counting instances of certain kinds.

Definition 4 (Instance function). Let O be an ontology; C̊ ∈ {C, ?C}, where C is a
class expression. The instance function is defined as follows:

inst(C̊,O) :=

{
{a ∈ in(O) | O |= C(a)} if C̊ = C

{a ∈ in(O) | O 6|= C(a) ∧ O 6|= ¬C(a)} if C̊ = ?C

Basic Measures Let us consider a GCI C v D. The axiom states that all instances
ofC are also instances ofD. Given an ontologyO := T ∪A, we can check how well the
data in A supports this statement taking the background knowledge in T into account.

Definition 5 (Basic measures). Given an ontologyO, the basic coverage, support, con-
tradiction, assumption of α := C v D are defined, respectively, as follows:

bcov(α,O) := |inst(C, O)| bsup(α,O) := |inst(C uD, O)|
bcnt(α,O) := |inst(C u ¬D, O)| basm(α,O) := |inst(C, O) ∩ inst(?D, O)|

Support is presumably a positive measure, i.e. higher values indicate better quality,
while contradiction and assumption are presumably negative ones, i.e. lower values in-
dicate better quality. Coverage is neither positive nor negative as it is the sum of support,
contradiction, and assumption. Support is a symmetric measure, while others are not.
The basic measures respect the OWA via distinguishing assumption and contradiction.

Example 3. Consider the ontologyO := T ∪A that models family relations, where the
TBox T and ABox A are as follows (hc, mt stand for hasChild, marriedTo).

T = {Father vMan, Mother vWoman, Man v ¬Woman, mt v mt−},
A = {Man(Arthur), Father(Chris), Father(James), Woman(Charlotte),

Woman(Margaret), Mother(Penelope), Mother(V ictoria),

hc(James,Charlotte), hc(V ictoria, Charlotte), hc(Chris, V ictoria),

hc(Penelope, V ictoria), hc(Chris,Arthur), hc(Penelope,Arthur),

mt(Chris, Penelope), mt(James, V ictoria), mt(Arthur,Margaret)}.

Consider the following axioms:

α1 := ∃mt.> vMother, α2 := ∃hc.> vMother.

Their basic measures are calculated as follows:

bsup(α1,O) = 2 bcnt(α1,O) = 3 basm(α1,O) = 1 bcov(α1,O) = 6

bsup(α2,O) = 2 bcnt(α2,O) = 2 basm(α2,O) = 0 bcov(α2,O) = 4

Thus, α2 is better than α1 because its support is the same but its contradiction and
assumption are lower.



The basic measures can be defined for an OPI R v S in the same way as for a GCI
C v D. The only difference is that, instead of returning instances of a class expression
C, the instance function would return instances of an object property expression R,
i.e. individual pairs (a, b) which are entailed to be connected by R. Please note that
assumption resembles braveness [20] but counts “guesses” of a hypothesis in a more
straightforward way since it depends only on a hypothesis and ontology.

Main Measures The basic measures only consider the “forward” direction of a
GCI C v D. According to the semantics of OWL, C v D has also the “backward”
direction. Formally, C v D ≡ ¬D v ¬C which is called the law of contraposition,
where ¬D v ¬C is called the contrapositive of C v D. Thus, C v D not only implies
that all instances of C are instances of D but also implies that all instances of ¬D are
instances of ¬C. We refine the basic measures using a syntactic trick to “merge” a GCI
and its contrapositive into a single GCI.

Definition 6 (Main Measures). Let O be an ontology, α := C v D, and α := C t
¬D v ¬CtD. The main coverage, support, contradiction, assumption of α are defined,
respectively, as follows:

cov(α,O) := bcov(α,O) sup(α,O) := bsup(α,O)

cnt(α,O) := bcnt(α,O) asm(α,O) := basm(α,O)

In comparison to the basic measures, see Definition 5, their respective main mea-
sures additionally count individuals relevant for the contrapositive. Example 4 shows
how a main measure can differ from its basic measure.

Example 4. In Example 3, we evaluate α2 := ∃hc.> v Mother via the basic mea-
sures. Its basic assumption is basm(α2,O) = 0, i.e. α2 makes no “guesses”. However,
its main assumption is asm(α2,O) = 1. Indeed, asArthur is an instance of¬Mother,
the axiom α2 assumes that Arthur has no children, i.e. he is an instance of ¬(∃hc.>).

In contrast to the basic measures, the main measures always return the same values
for an axiom and its contrapositive. Thus, they respect the semantics of OWL better than
the basic measures. The main measures of an axiom can be represented via the basic
measures of that axiom and its contrapositive. These properties are stated by Lemma 1.

Lemma 1. Let O be an ontology, α := C v D, and α′ := ¬D v ¬C. Then

cov(α,O) = cov(α′,O) = bcov(α,O) + bcov(α′,O)− bcnt(α,O)

sup(α,O) = sup(α′,O) = bsup(α,O) + bsup(α′,O)

cnt(α,O) = cnt(α′,O) = bcnt(α,O) = bcnt(α′,O)

asm(α,O) = asm(α′,O) = basm(α,O) + basm(α′,O)

Proof. Follows from Definition 4, 5, and 6, see [19] for details.

Clearly, the basic and main measures coincide if ¬C and ¬D have no instances in
O, e.g. C and D are EL class expressions and O is in EL. Example 5 illustrates how
evaluating a disjointness axiom under the OWA differs from evaluating it under the
CWA which is commonly made for learning disjointness axioms, see e.g. [8].



Example 5. Consider the ontology

O := {A(a1), . . . , A(am), B(b1), . . . , B(bn)}.

Under the CWA, the absence of information in O is treated as negation:

O¬ := O ∪ {¬B(a1), . . . ,¬B(am), ¬A(b1), . . . ,¬A(bn)}.

Consider the disjointness axiom α := A v ¬B. Under the CWA, it is assumed, perhaps
wrongly, to be of high quality: sup(α,O¬) = m + n, asm(α,O¬) = 0. In contrast,
under the OWA, its evaluation better reflects the state of knowledge inO: sup(α,O) =
0, asm(α,O) = m+ n.

Composite Measures As an axiom C v D in OWL is similar to an association
rule X ⇒ Y in ARM, rule measures [10] can be adapted to OWL. The challenge is to
respect the OWA, i.e. consider that there is ?C, see Definition 4, in addition to C and
¬C. Given a rule measure f(X,Y ), we suggest to translate it as follows. First, substi-
tute each positive occurrence of a variable X (Y ) in f(X,Y ) with a class expression C
(D). If neither X nor Y occurs negatively in f(X,Y ), then the translation is finished
and results in the axiom measure f(C,D). Otherwise, obtain two axiom measures as
follows: substitute each negative occurrence ¬X (¬Y ) in f(X,Y ) with ¬C (¬D), re-
sulting in f¬(C,D), and with ?C (?D), resulting in f?(C,D). Following this procedure,
we translate the standard rule measures: confidence, lift, and conviction.

Definition 7 (Composite basic measures). LetO be an ontology; C̊ ∈ {C, ?C}, where
C is a class expression;

PO(C̊1, . . . , C̊k) :=
1

|in(O)|
|
k⋂
i=1

inst(C̊i,O)|.

The basic confidence, lift, negated and assumed conviction of α := C v D are defined,
respectively, as follows:

bconf(α,O) :=
PO(C,D)

PO(C)
blift(α,O) :=

PO(C,D)

PO(C) ·PO(D)

bconv¬(α,O) :=
PO(C) ·PO(¬D)

PO(C,¬D)
bconv?(α,O) :=

PO(C) ·PO(?D)

PO(C, ?D)

The OWA is taken into consideration via distinguishing negated and assumed con-
viction. The composite basic measures can be rewritten using the basic coverage, sup-
port, contradiction, and assumption, see [19] for details.

Example 6. We calculate the composite basic measures of the axioms α1 and α2 in Ex-
ample 3. We first calculate the required probabilities (M stands forMother): PO(M) =
2
7 , PO(¬M) = 3

7 , PO(?M) = 2
7 . Then, we use them along with the basic measures

calculated in Example 3:
bconf(α1,O) = 2

6 = 1
3 , blift(α1,O) = 2

6· 27
= 7

6 , bconv
¬(α1,O) =

6· 37
3 =

6
7 , bconv

?(α1,O) =
6· 27
1 = 12

7 ; bconf(α2,O) = 2
4 = 1

2 , blift(α2,O) = 2
4· 27

=

7
4 , bconv

¬(α2,O) =
4· 37
2 = 6

7 , bconv
?(α2,O) =

4· 27
0 =∞.



The composite basic measures can be refined to treat GCIs according to the standard
semantics of OWL, i.e. as being equivalent to their contrapositives.

Definition 8 (Composite main measures). Let O be an ontology, α := C v D, and
α := C t ¬D v ¬C tD. The main confidence, lift, negated and assumed conviction
of α are defined, respectively, as follows:

conf(α,O) := bconf(α,O) lift(α,O) := blift(α,O)

conv¬(α,O) := bconv¬(α,O) conv?(α,O) := bconv?(α,O)

A lemma analogous to Lemma 1 holds for the composite main measures, i.e. they
treat a GCI as being equivalent to its contrapositive and can be rewritten using the main
measures and hence the basic measures [19].

5 Complete Construction of Hypotheses

We reduce the problem of constructing hypotheses to the problem of constructing class
(and property) expressions. Indeed, given a set C of class expressions of interest, we can
generate all possible GCIs using class expressions from C as a left-hand side or right-
hand side, i.e. {C v D | C,D ∈ C}. Thus, the number of generated GCIs is quadratic
in the size of C. As we suggested in [20], class expressions C can be generated from
some “seed” signature Σ using certain construction rules (templates), e.g. all pairwise
conjunctions, simple existential restrictions, etc. However, it is generally hard to know
which templates are likely to produce useful class expressions. Moreover, a brute-force
procedure that generates all class expressions is doomed even for inexpressive DLs, e.g.
EL. For example, given n class and m object property names, a number of all EL class
expressions of length up to 5 grows as fast as O(n3 + n2 ·m2 + n ·m4).

We propose an informed, bottom-up algorithm that constructs all class expressions
C of length up to `max in a given DL that have at least smin instances, i.e. sufficient
evidence in data. Importantly, the algorithm avoids considering all other class expres-
sions that are numerous, e.g. all class expressions without instances (and many others).
We integrate two ideas in one algorithm: enumerating class expressions via a refine-
ment operator [14, 7, 16] and pruning unpromising (insufficiently supported by data)
class expressions from the search a priori. A downward refinement operator2 ρ for DL
specifies a set ρ(C) of specialisations of a class expression C in that DL. Refinement
operators normally use the classic subsumption v as an ordering on class expressions.
Thus, C ′ ∈ ρ(C) implies C ′ v C.3

Example 7. Given the terms M , W , hc (standing for Man, Woman, hasChild) from
Example 3, the refinement operator ρ can be used to traverse the space of EL class
expressions as follows:

ρ(>) = {M, W, ∃hc.>}
ρ(M) = {M uM, M uW, M u ∃hc.>}

2 It is sufficient to consider only downward refinement operators.
3 The statement C′ v C is the abbreviation of ∅ |= C′ v C.



ρ(W ) = {W uM, W uW, W u ∃hc.>}
ρ(∃hc.>) = {∃hc.M, ∃hc.W, ∃hc.∃hc.>,∃hc.> uM,∃hc.> uW, ∃hc.> u ∃hc.>}
. . .

The mechanics of refinement operators allows for pruning unpromising class ex-
pressions from the search without even generating them (and hence without checking
their instances). Indeed, a specialisation of a class expression cannot have more in-
stances than the class expression itself has, see Lemma 2.

Lemma 2 (Anti-monotone property of specialisations). Let O be an ontology, C
a class expression, ρ a (downward) refinement operator. Then, C ′ ∈ ρ(C) implies
|inst(C ′,O)| ≤ |inst(C,O)|.

Lemma 2 implies that if C has an insufficient number of instances, then so do all
its further specialisations. It is essentially the anti-monotone property of itemsets used
in the APRIORI algorithm [1] which we have defined for OWL class expressions. Due
to this similarity, we call our algorithm of constructing class expressions DL-APRIORI,
see Algorithm 1.

Algorithm 1 DL-APRIORI (O, Σ,DL, `max, smin)

1: inputs
2: O := T ∪ A: an ontology
3: Σ: a finite set of terms such that > ∈ Σ
4: DL: a DL for class expressions
5: `max: a maximal length of a class expression such that 1 ≤ `max <∞
6: smin: a minimal instance threshold (support) such that 0 < smin ≤ |in(O)|
7: outputs
8: C: the set of all class expressions satisfying the input constraints
9: do

10: C ← ∅ % initialise the final set of class expressions
11: D ← {>} % initialise the set of class expressions yet to be specialised
12: ρ ← getOperator(DL, Σ, `max, T ) % initialise a refinement operator ρ
13: while D 6= ∅ do
14: C ← pick(D) % pick a class expression C to be specialised
15: D ← D\{C} % remove C from D
16: C ← C ∪ {C} % add C to C
17: C′ ← specialise(C, ρ) % specialise C using ρ
18: DC ← {D ∈ urc(C′) | @D′ ∈ C ∪ D : D′ ≡ D} % discard syntactic variations
19: D ← D ∪ {D ∈ DC | |inst(D,O)| ≥ smin} % add suitable specialisations
20: end while
21: return C

DL-APRIORI operates as follows. First, we initialise the refinement operator ρ (see
Line 12) with the given logic DL, signature Σ, maximal length `max, and TBox T
such that it only constructs specialisations satisfying the constraints and takes T into



consideration, e.g. its class hierarchy. The construction starts from >, see also Exam-
ple 7. The operator repeatedly specialises every expression picked from the set D of
candidates and adds its suitable specialisations to D (see Line 14 – 19). A specialisation
is suitable if it is not a syntactic variation of an already constructed one (see Line 18
where the function urc(C′) returns unique representatives of logically equivalent class
expressions in a set C′) and satisfies the minimal support smin (see Line 19). Once the
set D is empty, the algorithm terminates. Intuitively, smin acts as a “noise threshold”
that prunes expressions with insufficient evidence and therefore should be sufficiently
small to avoid missing useful expressions.

Given DL ≤ SROI, DL-APRIORI always terminates, guarantees to return all
class expressions modulo equivalence satisfying the input constraints, i.e. it is com-
plete, and only expressions satisfying the constraints, i.e. it is correct, see [19] for de-
tails. Completeness of DL-APRIORI ensures that no class expression (and thus no GCI)
satisfying the input constraints is missed, i.e. all suitable class expressions (modulo
equivalence) are returned. Of course, one should specify input constraints cautiously
(which is rather easy to do) to avoid missing useful class expressions.

Correctness, completeness, and termination of DL-APRIORI can be proved for DLs
with number restrictions ≥ k.C and ≤ k.C, e.g. SROIQ. This would require ei-
ther making the function `(C) (the length of a class expression C) dependent on k or
introducing the parameter kmax which bounds k. Both ways regain the properties of
DL-APRIORI for SROIQ but complicate the presentation.

6 Empirical Evaluation

We have implemented all presented techniques in a system called DL-MINER (see
the source code4 and demo interface5), as it is aimed at mining, i.e. constructing and
evaluating, axioms in DLs and OWL, see [19]. We use Java (version 8.91), the OWL
API [12] (version 3.5.0), and PELLET [21] (version 2.3.1) as a reasoner. All experiments
are executed on the following machine: Linux Ubuntu 14.04.2 LTS (64 bit), Intel Core
i5-3470 3.20 GHz, 8 GB RAM.

6.1 Mutual Correlations of Hypothesis Quality Measures

It is worthwhile to investigate whether the quality measures indeed capture different as-
pects of hypothesis quality. This can be clarified by examining their mutual correlations.
We investigate the following research question:

RQ Do related measures strongly correlate? Do unrelated measures not correlate?

The experimental data consists of two corpora of ontologies. The first corpus, called
handpicked, consists of 16 ontologies hand-picked from related work, e.g. from [7, 15].
The second corpus, called principled, comprises all BioPortal6 ontologies taken from

4 https://github.com/slava-sazonau/dlminer
5 http://www.dlminer.io
6 http://bioportal.bioontology.org



[17] which contain some data (at least 100 individuals and 100 facts). It consists of 21
ontologies. In the handpicked and principled corpus, 9 and 14 ontologies, respectively,
are at least as expressive as ALC. With regard to the size, 3 and 0 ontologies, respec-
tively, contain less than 100 individuals; 8 and 9 ontologies contain from 100 to 1000
individuals; 5 and 12 ontologies contain more than 1000 individuals. Both corpora are
made publicly available [19]. We run the experiment on each corpus independently.

For each ontology O, we run DL-APRIORI, see Algorithm 1, with DL := ALC,
`max := 4, smin := 10. Since Õ can contain many irrelevant terms, the seed sig-
nature is selected using the modular structure of the ontology as follows [20]: Σ :=
crn(M) ∪ {>}, whereM := ⊥-module(O, crn(A)) [6] and crn(O) returns the set
of all class and property names occurring in O. Then, we generate all possible GCIs
(which can thus have length up to 8) from the constructed class expressions and OPIs
with inverse properties and property chains. Using the proposed quality measures and
measures from [20], we evaluate 500 randomly selected hypotheses per ontology. Then,
we compute mutual correlations of the quality measures across all hypotheses in a cor-
pus. We present the results, see Figure 1, in the form of a correlation matrix, which
is a symmetric matrix of (Pearson’s) correlation coefficients. For each correlation, we
additionally run a statistical significance test with significance level 0.05.
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(b) Principled corpus

Fig. 1: Mutual correlations of quality measures for handpicked (a) and principled (b)
corpus: positive correlations are in blue, negative correlations are in red, crosses mark
statistically insignificant correlations (significance level 0.05). The abbreviations are
as follows: (B)SUPP – (basic) support, (B)ASSUM – (basic) assumption, (B)CONF
– (basic) confidence, (B)LIFT – (basic) lift, (B)CONVN – (basic) negated conviction,
(B)CONVQ – (basic) assumed conviction, CONTR – contradiction, FITN – fitness,
BRAV – braveness, COMPL – complexity, DISSIM – dissimilarity.



First, we note that all main measures, except negated conviction for the principled
corpus, strongly and positively correlate with their basic counterparts (please notice
lines of dark blue squares parallel to the main diagonal in Figure 1). This result is ex-
pected because the basic measures are approximations of the respective main measures.
All the differences are due to the presence of negative information in the ontologies. An-
other strong and positive correlation occurs between assumption and braveness which
is also expected since these measures count (though differently) “guesses” of a hypoth-
esis. Among other observations are the positive correlations between conviction and
confidence, particularly in the principled corpus, that capture similar aspects of quality.
Interestingly, lift positively correlates with length and depth, i.e. longer hypotheses are
likely to be of higher quality as measured by lift. Thus, we can answer RQ as follows:
related measures do correlate significantly, while unrelated measures mostly do not. In
other words, the measures do capture different aspects of quality.

In addition, we have examined the acquired hypotheses by eyeballing them. Table 1
shows some high-quality hypotheses (please notice two property chains).

∃hasBond.> v ∃hasAtom.>
AssociateProfessor v ∃teaches.TeachingCourse
Patient u ∃hasShape.Irregular v ∃hasDensity.Illdefined
∀siblingof.Human v Human
OKRunningLoan v ∃hasLoanStatusV alue.(¬ProblemStatus)
married ◦ hasChild v hasChild
Movie v ∃cast.Actor
BetaSugar u ∃hasRingForm.> v Pyranose
clinicallySimilar ◦ hasSeverity v hasSeverity
P lanetaryLayer v ∃hasAstronomicalBody.>

Table 1: Examples of acquired hypotheses

6.2 A Case Study

In order to receive human feedback, we run a preliminary case study with one domain
expert. The subject of the study is the ontology,7 in the following called ntds, created
using data from the US National Transgender Discrimination Survey8 and curated by
the domain expert. The ontology is in SROIQ and contains 169,058 individuals. We
investigate the following research questions:

RQ1 What kinds of interesting hypotheses (if any) can we mine for the domain expert?
RQ2 Which measures (if any) are indicators of interestingness of a hypothesis?

To answer the research questions, we ask the domain expert to judge a hypothesis
by validity and interestingness (which are different notions):

7 The ontology is not public yet.
8 http://www.ustranssurvey.org/



– Validity shows whether a hypothesis captures a general truth about the domain and
can be perceived as an axiom to be added to the ontology.

– Interestingness shows how interesting a hypothesis is for a domain expert, i.e. eval-
uates her curiosity and attention that she pays to a hypothesis.

The domain expert assesses validity of a hypothesis by choosing one of the follow-
ing three options: “correct”, “wrong”, “don’t know”. Interestingness of a hypothesis
is rated on the linear scale from 0 (lowest) to 4 (highest). We collect feedback using an
online survey. To make a survey, we generate hypotheses as above. Since purely random
sampling is likely to result in few (or no) promising hypotheses, we randomly select 30
hypotheses whose confidence exceeds 0.9 and 30 from all the rest to ensure variability
of hypothesis quality in the survey which thus consists of 60 hypotheses.

The survey was completed by one domain expert. In the feedback that we received,
the domain expert expressed interest in reviewing additional hypotheses and gave us
focus terms, i.e. class and property names of a certain topic. We ran another survey of
60 hypotheses made analogously but using only the focus terms instead of the (almost)
entire signature. The survey was completed by the same domain expert. Thus, 120 hy-
potheses were judged in total. In the following, we refer to the initial, unfocused survey
as Survey 1 and the follow-up, focused survey as Survey 2, see Table 2.

Validity Interestingness
0 1 2 3 4

Wrong 6 11 30 - -
Survey 1 Don’t know - 1 - 2 4
(unfocused) Correct - - - 6 -

Wrong 1 - 1 - 5
Survey 2 Don’t know - - - - 49
(focused) Correct - - - - 4

Table 2: Assessment of hypotheses acquired for ntds (“-” denotes zero)

According to Table 2, in Survey 1, unknown and correct hypotheses are rated to be
much more interesting than wrong ones: all of them, except one, have high values of
interestingness. Amongst those, unknown hypotheses are marked to be the most inter-
esting and, according to the expert’s response, require further analysis. The results of
Survey 2 are much different from the results of Survey 1. All hypotheses, except two,
are marked by the highest value of interestingness, including wrong ones. Moreover,
the domain expert informed us in her response that one of the wrong hypotheses not
only indicated data bias but revealed an error in the ontology.

Thus, a mined hypothesis can be interesting regardless of its validity. More specifi-
cally, there are three kinds of interesting hypotheses: a correct hypothesis reflects known
domain knowledge which is not yet captured in the ontology (enriches the TBox); an
unknown hypothesis captures possibly true but yet unknown domain knowledge wor-
thy of further enquiry; a wrong hypothesis indicates a modelling error or data bias. This
answers RQ1 and confirms our observations made in [20].



We now turn our attention to RQ2, i.e. compare measures with expert’s judgements.
Figure 2 shows correlations between the quality measures and expert’s judgements.
Dissimilarity, confidence, length, and depth are the strongest positive indicators of va-
lidity, see Figure 2a. Lift turns from a non-indicator in Survey 1 to a positive indicator
in Survey 2. The strongest negative indicators of validity are complexity, support, and
assumption. The result that support is a negative indicator is rather unexpected, consid-
ering its definition. A possible explanation is that hypotheses with more evidence seem
to be easier to reject for the domain expert because “counterexamples” are easier to
recall.
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Fig. 2: Correlations (in descending order) between hypothesis quality measures (abbre-
viated as in Figure 1) and expert’s judgements: validity (a) and interestingness (b).

As Figure 2b shows, confidence is a positive indicator of interestingness in Survey
1. However, it is not in Survey 2: length, depth, dissimilarity, and lift have significantly
stronger positive correlations. Thus, lift and dissimilarity turn from non-indicators of
interestingness in Survey 1 to its positive indicators in Survey 2. Moreover, length and
depth become strong positive indicators of interestingness showing that longer hypothe-
ses are likely to be more interesting. This is not surprising because longer hypotheses
are capable of capturing phenomena that shorter ones cannot capture, i.e. they are more
powerful. Of course, a hypothesis can be “too long” for a domain expert to perceive. As
for validity, the strongest negative indicators of interestingness are complexity, assump-
tion, and support. Support appears to be a negative indicator of interestingness because
hypotheses with high support are likely to be familiar to the expert since they reflect
easily seen patterns in the data. Overall, the results in Figure 2 show that there is no
single best indicator of hypothesis quality. This further supports our view that we need
to consider multiple quality measures to identify promising hypotheses.



7 Future Work

The defined quality measures do not form the “complete list” of hypothesis quality mea-
sures. Clearly, there are other possible measures. In particular, additional rule measures
can be adapted to OWL, e.g. cosine, Gini index, J-measure [10]. Such adaptation can
respect the standard OWL semantics and its OWA using the procedure of translating
rule measures into axiom measures presented in this paper.

Our implementation, DL-MINER, currently supports constructing GCIs for ALC
(as well as complex property hierarchies and inverses). It relies on the availability of
suitable refinement operators that are currently proposed for ALC [16]. In order to
construct class expressions beyond ALC while preserving completeness, we need to
design suitable refinement operators for more expressive DLs, e.g. SROIQ(D) [11].

Besides sequentially examining acquired hypotheses, a domain expert can poten-
tially use them for interactive ontology completion and debugging. More specifically,
approved hypotheses can be added to the ontology which is then used to mine new hy-
potheses and the step is repeated. Within such an iterative process, modelling errors can
be identified using wrong hypotheses and then repaired. After that, a user can continue
completing the ontology until it is sufficiently enriched or new errors are found. This
scenario and additional investigations of the quality measures are subjects of further
case studies.

8 Acknowledgements

We thank Amanda Hicks (the University of Florida) for participating in our case study
and giving us valuable feedback and Michael Rutherford (the University of Arkansas
for Medical Sciences) for translating data into OWL.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In:
Proceedings of the 20th International Conference on Very Large Data Bases (VLDB’94). pp.
487–499. Morgan Kaufmann, Santiago de Chile, Chile (September 1994)

2. Alsubait, T., Parsia, B., Sattler, U.: Measuring similarity in ontologies: A new family of
measures. In: Proceedings of the 19th International Conference on Knowledge Engineering
and Knowledge Management (EKAW’14). Lecture Notes in Computer Science, vol. 8876,
pp. 13–25. Springer, Linköping, Sweden (November 2014)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press, New York, NY, USA, 2nd edn. (2010)

4. Baader, F., Sertkaya, B., Turhan, A.: Computing the least common subsumer w.r.t. a back-
ground terminology. Journal of Applied Logic 5(3), 392–420 (2007)

5. Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic: Theoretical and experi-
mental results. In: Proceedings of the 4th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’94). pp. 121–133. Morgan Kaufmann, Bonn, Ger-
many (May 1994)



6. Del Vescovo, C., Klinov, P., Parsia, B., Sattler, U., Schneider, T., Tsarkov, D.: Empirical
study of logic-based modules: Cheap is cheerful. In: Proceedings of the 12th International
Semantic Web Conference (ISWC’13). Lecture Notes in Computer Science, vol. 8218, pp.
84–100. Springer, Sydney, Australia (October 2013)

7. Fanizzi, N., D’Amato, C., Esposito, F.: DL-FOIL concept learning in Description Logics. In:
Proceedings of the 18th International Conference on Inductive Logic Programming (ILP’08).
Lecture Notes in Computer Science, vol. 5194, pp. 107–121. Springer, Prague, Czech Re-
public (2008)

8. Fleischhacker, D., Völker, J.: Inductive learning of disjointness axioms. In: Proceedings of
the Confederated International Conference: On the Move to Meaningful Internet Systems
(OTM’11). Lecture Notes in Computer Science, vol. 7045, pp. 680–697. Springer, Hersonis-
sos, Crete, Greece (October 2011)

9. Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.: AMIE: Association rule mining under
incomplete evidence in ontological knowledge bases. In: Proceedings of the 22nd Interna-
tional World Wide Web Conference (WWW’13). pp. 413–422. International World Wide
Web Conferences Steering Committee / ACM, Rio de Janeiro, Brazil (2013)

10. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey. ACM Com-
puting Surveys 38(3) (September 2006)

11. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2: The
next step for OWL. Journal of Web Semantics 6(4), 309–322 (2008)

12. Horridge, M., Bechhofer, S.: The OWL API: A java API for OWL ontologies. Semantic Web
2(1), 11–21 (2011)

13. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL. In: Pro-
ceedings of the 7th International Semantic Web Conference (ISWC’08). Lecture Notes in
Computer Science, vol. 5318, pp. 323–338. Springer, Karlsruhe, Germany (October 2008)

14. Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept
learning in the Semantic Web. Applied Intelligence 26(2), 139–159 (April 2007)

15. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology en-
gineering. Journal of Web Semantics 9(1), 71–81 (2011)

16. Lehmann, J., Hitzler, P.: Concept learning in Description Logics using refinement operators.
Machine Learning 78(1-2), 203–250 (2010)

17. Matentzoglu, N., Parsia, B.: BioPortal Snapshot 27.01.2015. https://doi.org/10.
5281/zenodo.15667 (February 2015)

18. Ratcliffe, D., Taylor, K.L.: Closed-world concept induction for learning in OWL knowledge
bases. In: Proceedings of the 19th International Conference on Knowledge Engineering and
Knowledge Management (EKAW’14). Lecture Notes in Computer Science, vol. 8876, pp.
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