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Abstract. In Stream Reasoning (SR), empirical research on RDF Stream
Processing (RSP) is attracting a growing attention. The SR community
proposed methodologies and benchmarks to investigate the RSP solu-
tion space and improve existing approaches. In this paper, we present
RSPLab, an infrastructure that reduces the effort required to design and
execute reproducible experiments as well as share their results. RSPLab
integrates two existing RSP benchmarks (LSBench and CityBench) and
two RSP engines (C-SPARQL engine and CQELS). It provides a pro-
grammatic environment to: deploy in the cloud RDF Streams and RSP
engines, interact with them using TripleWave and RSP Services, and
continuously monitor their performances and collect statistics. RSPLab
is released as open-source under an Apache 2.0 license.
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1 Introduction

In the recent years, research about Semantic Web and streaming data – Stream
Reasoning (SR) – constantly grew. The community has been investigating foun-
dational research on algorithms for RDF Stream Processing (RSP) [6], applied
research with systems architectures [3, 10] and, recently, empirical research on
benchmarks [15, 11, 5, 1, 8] and evaluation methodologies [14, 17, 12].

Focusing on the latter two, the state of the art comprehends RSP engines
prototypes [3, 10] and benchmarks that address the different challenges the com-
munity investigated: query language expressive power [15], performance [11],
correctness of results [5, 8], memory load and latency [1, 8]. This heterogeneity
of benchmarks helps to explore the solution space, but hinders the systematic
evaluation of RSP engines. Therefore, [14] proposed a requirement analysis for
benchmarks and ranked existing benchmark accordingly; [17] proposed a frame-
work for systematic and comparative RSP research. Beside the aforementioned
community efforts, the evaluation of RSP engines is still not systematic.

In this paper, we propose RSPLab [18] a cloud-ready open-source test driver
to support empirical research for SR/RSP. RSPLab offers a programmatic envi-
ronment design and execute experiments. It uses linked data principle to publish
RDF streams [9] and a set of REST APIs [2] to interact with RSP engines.

RSPLab continuously monitors memory consumption and CPU load of the
deployed RSP engines and it persists the measurements on a time-series database.
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It allows to estimate results correctness and max throughput post-hoc by collect-
ing query results on a reliable file storage. RSPLab provides real-time assisted
data visualization by the means of a dashboard. Finally, it allows to publish
experimental reports as linked data.

2 RSPLab

In this section, we present the requirements for a RSP test driver, we describe
the test driver architecture and how RSPLab currently implements it.

Requirements. We elicit the requirements for a test driver considering the
existing research on benchmarking of RSP systems. We focused on the different
engines involved, the data used and the applied methodologies. Therefore, our
requirements analysis comprises:

(R.1) Benchmarks Independence. RSPLab must allow its users to integrate any
benchmark, i.e. ontologies, streams, dataset and queries.
(R.2) Engine Independence. RSPLab must be agnostic to the RSP engine under
test and it must not be bounded to any specific query language (QL).
(R.3) Minimal yet Extensible KPI set. According to the state of the art [1, 14,
17], the KPI set must include at least query result correctness and throughput.
However, the KPI set must be extensible to include KPIs that are measurable
in specific implementation and deployment.
(R.4) Continuous Monitoring. RSPLab must enable the observation of the RSP
engine dynamics under the whole experiment execution.
(R.5) Error Minimization. RSPLab must minimize the experimental error, iso-
lating each module to avoid resource contention.
(R.6) Ease of Deployment. RSPLab must be easy-to-deploy and it must simplify
the deployment of the experiments modules, e.g. streams and engines.
(R.7) Ease of Execution. RSPLab must simplify the access to the available
resource, e.g. reuse existing benchmarks, and the execution of experiments.
(R.8) Repeatability RSPLab must guarantee experiment repeatability under the
specific settings.
(R.9) Data Analysis. RSPLab must render simple data analyses about the
collected statistics and allow its users to perform custom ones.
(R.10)Data Publishing. RSPLab must simplify the publications of performance
statistics, query results and experiment design using linked data principles.

Architecture. Figure 1 presents RSPLab architecture that comprises four in-
dependent tiers: Streamer, Consumer, Collector and Controller. For each tier, it
shows its logical submodules, e.g., a timeseries database in the Collector, and it
refers to the technologies involved in the current implementation, e.g. InfluxDB.

The Streamer, the data provisioning tier, publishes RDF streams from existing
benchmarks (R.1). The Streamer can stream any (virtual) RDF dataset that
has a temporal dimension. Published RDF streams are accessible from the web.
The Consumer, the data processing tier, exposes the RSP engines on the web by
the mean of REST APIs (R.2). The minimal required method comprise source,
query and sinks registration (R.1).
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Fig. 1: RSPLab Architecture and Implementation

The Collector, the monitoring tier, comprises two submodules: (1) a monitoring
system that, during the executions of experiments, continuously measures the
performance statistics of any deployed module (R.4), (2) a time-series database
to save the statistics and a persistent storage to save the query results. (R.3).
The Controller, the control and analysis tier, allows the RSPLab user to control
the other tiers. It allows to design and execute the experiments programmatically
(R.7). It enable the verification of the results (R.8). through an assisted and
customized real time data analysis dashboard (R.9).

Implementation Experience. To develop RSPLab, we used Docker, i.e. a
lightweight virtualization framework1. Docker simplifies the deployment process,
it reduces the biases and foster the reproducibility of experiments [4]. As any
virtualization theniques, it grants full control to the available resources, allow-
ing to scale the virtual infrastructure (R.6). It minimizes the experimental error
(R.5) by guaranteeing components isolation. Moreover, it fosters reproducibil-
ity by making the execution hardware-independent (R.8). Figure 1 illustrates
how we deployed RSPLab’s components in independent virtual machines. It
also shows how the dockerization is done and it references the used technologies.
RSPLab is natively deployable on AWS2 and Azure3 infrastructures (R.6).

Streamer. This tier is implemented using a modified version of TripleWave[9]4,5

that includes methods to registers and start streams remotely. It includes syn-

1 https://www.docker.com/
2 https://aws.amazon.com
3 https://azure.microsoft.com
4 https://github.com/streamreasoning/triplewave/tree/rsplab
5 https://hub.docker.co/r/streamreasoning/triplewave/.
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thetic RDF data from LSBench. We used the included data generator and we
loaded them into a SPARQL endpoint to stream with TripleWave. It also in-
cludes data from CityBench. We exploited R2RML mappings and to convert
CSV data into RDF on-demand. This tier is not limited to them. Streams from
other benchmarks can be added following TripleWave principles.
Consumer. This tier uses the RSP Services [2], i.e. a set of REST methods that
abstract from the RSP engine’s query language syntax and semantics. The RSP
services generalize the processing model enabling streams registration, queries
registration and results consumption. This tier includes, but it not limited to,
CQELS [10] and C-SPARQL [3] engine. Using the RSP Services, new RSP en-
gines can be added to RSPLab.
Collector. This tiers includes (1) a distributed continuous monitoring system,
called cAdvisor6, that collects statistics about memory consumption, CPU load
every 100ms (R.3) for Docker containers. We target those running RSP engines
but any of RSPLab’s component can be observed. (2) A time-series database,
called InfluxDB,7 where we write the collected statistics. (3) A python daemon,
called RSPSink, that persists query results on a cloud file systems (e.g., Ama-
zon S3 or Azure Blob Storage), allowing to verify correctness and estimate the
system’s maximum throughput post-hoc.
Controller. This tier is implemented using iPython Notebooks8. We developed
an ad-hoc python library [16] that allows to interact with the whole environment.
It includes wrappers to RSP services, TripleWave APIs and sinks. Thanks to this
programmatic APIs the RSPLab user can run TripleWave and RSP engine in-
stances, execute experiment over them and analyze the results in a programmatic
way (R.7). Moreover, with Grafana9 it provides an assisted data visualization
dashboard that reads data from InfluxDB enabling real-time monitoring (R.9).
Last, but not least, the included library automatically generates experiments
reports using the VOID vocabulary (R.10).

3 RSPLab In-Use

Citybench
E CSPARQL engine
K Memory & CPU
T citybench ontology
D SensorRepository
S Aarhus Traffic Data

182955 & 158505
Q Q1

Table 1: The running experiment.

In this section, we show how to de-
sign and execute experiments and how
to publish the results as linked using
RSPLab.

Experiment Design. For this process,
we consider the following experiment def-
inition from [17]. An RSP experiment is
a tuple 〈E ,K,Q,S, T ,D〉 where E is the
RSP engine subject of the evaluation, K is
the set of KPIs measured in the experi-
ment, i.e., those included in RSPLab. Q is the set of continuous queries that the

6 https://github.com/google/cadvisor
7 https://www.influxdata.com/
8 https://ipython.org/notebook.html
9 https://grafana.com/



RSPLab, RDF Stream Processing Benchmarking made easy 5

1 Q1 = rsp . BenchmarkQueries . CityBench .Q1
2 e = rsp .new experiment ( )
3 e . add engine ( ” http :// c q l e s . rsp−lab . org ” , 80 , rsp . D i a l e c t s .CQELS)
4 e .add KPIs( rsp .KPI . Memory Consumption , rsp .KPI . CPU Load)
5 e . add query ( ”CB.Q1” , rsp . QueryType . Query , Q1 , rsp . D i a l e c t s .CQELS)
6 e . add tbox ( ”CB.Q1” , name=” c i t y t r a f f i c . owl” , base=”rsp−lab . org ” )
7 e . add graph ( ”CB.Q1” , name=”SensorRepos i tory . rd f ” , base=”rsp−lab . org ” )
8 e . add stream ( ”CB.Q1” , ”AarhusTraff icData158505 ” , base=”rsp−lab . org ” )
9 e . add stream ( ”CB.Q1” , ”AarhusTraff icData182955 ” , base=”rsp−lab . org ” )

Listing 1.1: RSP Experiment Design RSPLab

engine has to answer. S is the set of RDF streams required to the queries in Q.
Finally, T , D are, respectively, the static set of terminological axioms (TBox),
and the static RDF datasets.

Table 1 shows an example of an experiment that can be defined within
RSPLab. We took this example from the Citybench benchmark. The engine used
is C-SPARQL, the observed measures are Memory and CPU load, the TBox is
the citybench ontology and the RDF dataset involved is SensorRepository. The
query-set consists of the only query Q1 which utilizes data coming from two
traffic streams (e.g., AarhusTrafficData182955 and AarhusTrafficData158505 ).
Listing 1.1 shows how to create the experiment with the included python library.
All the static data, streams and queries are available at on GitHub10.

1 #WARM−UP
2 rsp = RSPEngine ( ehost , eport ) ;
3
4 f o r d in experiment . graphs ( ) :
5 rsp . register graph (d)
6 f o r s in experiment . streams ( ) :
7 rsp . register stream ( s )
8 f o r q in experiment . qu e r i e s ( ) :
9 rsp . register query ( q )

10 rsp . new observer ( query , ’
de fau l t ’ )

11 spawn sinks ( experiment )
12
13 # OBSERVE
14 wait ( experiment . durat ion ( ) )
15
16 f o r q in engine . qu e r i e s ( ) :
17 f o r o in engine . ob s e rve r s ( q ) :
18 rsp . unregister observer ( o )
19 rsp . unregister query ( q )
20 f o r s in engine . streams ( ) :
21 rsp . unregister stream ( s )
22 rsp . report . publish ( experiment )

Listing 1.2: Execution with
RSPLab.

@pref ix :<http :// rsp−lab . org /vocab/>

: RSPLab a f o a f : Organizat ion ;
: exp1 a void : Dataset ;
dcterms : sub j e c t <:CSPARQL Engine>;
dcterms : con t r i bu to r :RSPLab ;
dcterms : c r eated ”2017/05/08”;
dcterms : l i c e n s e <http : / / . . cc />;
void : subset : exp , : r e s u l t s , : cpu .

: exp a void : Dataset ;
void : dataDump <exp1 . j son ld>
dcterms : sub j e c t <:Experiment> .

: cpu a void : Dataset ;
void : dataDump <exp1−cpu . csv>;
dcterms : sub j e c t <r sp lab :CPULoad> .

: r e s u l t s a void : Dataset ;
void : subset [

dcterms : sub j e c t <:Results >;
void : f e a tu r e <format : Turtle >;
void : dataDump <Q1. t t l> . ]

Listing 1.3: Experimental Report with
VoID.

Experiment Execution. In RSP, the experimental workflow has a warm-up
phase followed by an observation phase because most of the transient behaviors
occur during the engine warm-up and they should not bias the performance
measures [12, 1, 11].

Warm-Up. In this phase, RSPLab deploys engine and RDF streams. It reg-
isters the streams, the queries and the observers on the RSP engine subject of
the evaluation. It sets up the sinks to persists the queries results. Observing

10 https://github.com/streamreasoning/rsplab, at rsplab/streamer/citybench/setup/
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Fig. 2: C-SPARQL engine CPU and Memory usage.

the engine’s dynamics using the assisted dashboard (Grafana) and it possible to
determinate when the RSP engine is steady. Listings 1.2, lines 1 to 14, shows
how this phase looks like in RSPLab. Figure 2 shows how this phase impacts the
system dynamics approximatively until 15.16.

Observe. In this phase, which usually has a fixed duration, the RSP engine
is stable. It consumes the streams and answers the queries. The results and the
performance statistics are persisted. When time expires, everything is shut down.
Listings 1.2, lines 15 to 24 shows how this phase looks like in RSPLab. RSPLab
makes possible to define more complex workflows, simulate real scenarios, e.g.
add/remove queries or tune stream rates while observing the engine response.

Report & Analysis. RSPLab automatically collects performance statistics and
enable experiment reporting using linked data principles. An example of data
visualization using the integrated dashboard is in Figure 2. Listings 1.3 shows
an example of experimental done with RSPLab that uses VOID vocabulary to
publish experiment design, CPU performance metrics and query results.

4 Related Work

In this section, we compare RSPLab with existing research solutions from SR/RSP,
Linked Data, and database.

LSBench’s and Citybench [11, 1] proposed two test-drivers that push RDF
Stream to the RSP engine subject of the evaluation. Differently from RSPLab,
they are not benchmark-independent (R.1). The test drivers are designed to
work with the benchmark queries and stream the benchmark data and do not
guarantee error minimization by the means of module isolation(R.5).

Heaven [17] includes a test-bed proof of concept, with an architecture similar
to RSPLab. However, Heaven does not include a programmatic environment that
simplifies experiment execution (R.7), is not engine-independent (R.2), and
its scope is limited to window-based, single-thread RSP engines. Like RSPLab,
Heaven treats RSP engines as black box, but communication happens using Java
Facade rather than a RESTful interface. Therefore, Heaven constrains the RSP
engine’s processing model. It enables analysis of performance dynamics but it
does not offer assisted data visualization (R.9) nor automated reporting (R.10).
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LOD Lab [13] aims at reducing the human cost of approach evaluation. It also
supports data cleaning and simplifies dataset selections using metadata. How-
ever, RDF Streams and RSP engine testing are not in its scope. LOD Lab does
not offer a continuous monitoring system, but only addresses the problem of data
provisioning. It provides a command line interface to interact with it (R.6), but
not a programmatic environment to control the experimental workflow (R.7).

OLTP-Bench [7] is a universal benchmarking infrastructure for relational
databases. Similarly to RSPLab it supports the deployment in a distributed
environment (R.6) and it comes with assisted statistics visualization (R.9).
However, it does not offer a programmatic environment to interact with the
platform, execute experiments (R.7) and publish reports (R.10). OLTP-Bench
includes a workload manager, but does not consider RDF Streams. Moreover, it
provides an SQL dialect translation module, which is flexible enough in the SQL
area but not in the SR/RSP one (R.2).

5 Conclusion

This paper presented RSPLab, a test-drive for SR/RSP engines that can be de-
ployed on the cloud. RSPLab integrates two existing RSP benchmarks (LSBench
and CityBench) and two exiting RSP engines ( C-SPARQL engine and CQELS).
We showed that it enables design of experiments by the means of a program-
matic interface that allows deploying the environment, running experiments,
measuring the performance, visualizing the results as reports, and cleaning up
the environment to get ready for a new experiment.

RSPLab is released as open-source citable[18, 16] and available at rsp-lab.
org Examples, documentation and deployment guides are available on GitHub
hosted by the Stream Reasoning organization.

Future work on RSPLab comprise (i) the integration of all the existing RSP
benchmarks datasets and queries, i.e. SRBench and YaBench, (ii) the integration
of CSRBench’s and YABench’s oracles for correctness checking (iii) the execution
of existing benchmark experiments at scale and systematically. Last, but not
least, (iv) the extension of RSPLab APIs towards a RSP Library.
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