
BatWAn: A Binary and Multi-Way Query Plan
Analyzer

Mikhail Galkin1,2,3, Maria-Esther Vidal2

1 Smart Data Analytics (SDA), University of Bonn
{galkin|vidal}@cs.uni-bonn.de

2 Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS)
3 ITMO University, Saint Petersburg, Russia

Abstract. The majority of existing SPARQL query engines generate
query plans composed of binary join operators. Albeit effective, binary
joins can drastically impact on the performance of query processing
whenever source answers need to be passed through multiple operators
in a query plan. Multi-way joins have been proposed to overcome this
problem; they are able to propagate and generate results in a single
step during query execution. We demonstrate the benefits of query plans
with multi-way operators with BatWAn, a binary and multi-way query
plan analyzer. Attendees will observe the behavior of multi-way joins on
queries of different selectivity, as well as the impact on total execution
time, time for the first answer, and continuous results yield over time.
The demo is available at: http://ec2-34-212-221-44.us-west-2.compute.
amazonaws.com:9000/.

1 Introduction

SPARQL query engines rely on join operators to merge intermediate results col-
lected from the evaluation of two subqueries of a given query. Query engines seek
to construct query plans that consist of join operators to optimize execution
time, network exchange, and tackle network delays. Despite classic examples,
e.g., symmetric hash join [3], nested loop join [3], and XJoin [5], query engines
usually implement their own join operators to enhance the engine performance,
e.g., ANAPSID [2] utilizes the agjoin while FedX employs the controlled bound
worker join (CBJ). Moreover, query engines are able to combine various join
operators to achieve (at their estimation) the most effective and efficient query
plan. For instance, nLDE [1] builds a query plan composed of both classic and
ANAPSID operators. However, all the mentioned operators are binary, i.e., they
accept two arguments (intermediate results of two subqueries). On the other
hand, multi-way join operators, e.g., SMJoin [4], accept more than two argu-
ments as an input. An arbitrary operator arity provides several trade-offs that
affect total query execution time, time until the first answer, and continuous
result yield. Those trade-offs of employing a multi-way join operator instead
of a binary join are compared in BatWAn, a binary and multi-way query plan
analyzer. BatWAn is designed to shed light on the characteristics of the SPARQL
queries where multi-way query plans outperform binary join plans. Attendees will
be able to select different queries and observe how the shape of the query plans

http://ec2-34-212-221-44.us-west-2.compute.amazonaws.com:9000/
http://ec2-34-212-221-44.us-west-2.compute.amazonaws.com:9000/


2 Mikhail Galkin et al.

(a) Query plan (b) Query execution result

Fig. 1: High Selective Query.

and their operators affect the values of experimental metrics like total execu-
tion time, time for the first answer, and continuous generation of answers over
the time. The demo includes a set of queries to be used in the analysis of the
performance of the binary and multi-way join operators.

2 The BatWAn Architecture

BatWAn accepts a SPARQL query with an assumption that every triple pattern
is answered by one specific source. BatWAn pushes the query to two independent
query planners, i.e., binary plans are produced by nLDE [1], whereas multi-way
plans are built with the extension of ANAPSID tailored to employ SMJoin [4].

select * where {

?d1 dct:subject dbr:Category:Hereditary_cancers .

?d1 foaf:isPrimaryTopicOf wikipedia_en:Cowden_syndrome .

?d1 dbo:wikiPageExternalLink

<http://www.cancer.net/cancer-types/cowden-syndrome> .

?d1 dct:subject dbr:Category:Epidermal_nevi,_neoplasms,_cysts .

?d1 dct:subject

dbr:Category:Deficiencies_of_intracellular_signaling_peptides_and_proteins }

Listing 1.1: High Selective Query

The resulting plan is visualized using Cytoscape.js4 library. Additionally, Bat-
WAn shows an estimated number of intermediate results, i.e., answers of each
triple pattern. Therefore, BatWAn categorizes input queries as high selective
(where each triple pattern returns < 1000 intermediate results) and low se-
lective (where triple pattern cardinality is not limited). An example of a high
selective query is presented in Listing 1.1. The query is composed of five triple
patterns. Binary and multi-way plans for the high selective query are illustrated
in Fig. 1a; the maximal cardinality of query triple patterns does not exceed 275
4 http://js.cytoscape.org/

http://js.cytoscape.org/


BatWAn: A Binary and Multi-Way Query Plan Analyzer 3

(a) Query plan (b) Query execution result

Fig. 2: Low Selective Query.

intermediate results. Having obtained the plan, BatWAn depicts query execu-
tion results using Highcharts.js5 library against a DBpedia 2015 HDT endpoint
hosted by a Triple Pattern Fragments JS server deployed on a Ubuntu 16.04 (64
bits) Dell PowerEdge R805 server, AMD Opteron 2.4 GHz CPU, 64 cores, 256
GB RAM. Total execution time of nLDE and SMjoin are reported as in Fig. 1b.

select * where {

?d1 dct:subject dbr:Category:Anticonvulsants .

?d1 dct:subject dbr:Category:World_Health_Organization_essential_medicines .

?d1 rdf:type wikidata:Q8386 }

Listing 1.2: Low Selective Query

Furthermore, BatWAn visualizes values of metrics that capture the perfor-
mance of low selective queries, i.e., queries with triple patterns that return> 1000
intermediate results. An example of a low selective query is presented in List-
ing 1.2. As in previous example, BatWAn visualizes the binary and multi-way
plans (Fig. 2a). Furthermore, the comparison between the total execution time
of nLDE and SMJoin and the continuous behavior of these plans over the time
are illustrated (Fig. 2b).

3 Demonstration of Use Cases

We motivate our work by observing how binary and multi-way plans exhibit
different behavior on high- and low-selective queries. Thus, our ambition is to
devise use cases that allow for the understanding of both the characteristics of
these queries and their corresponding plans, and the behavior exhibited by the
evaluated query engines. We will demonstrate the following use cases:
Effects on Total Query Execution time. We will show that in queries as
the ones presented in Listing 1.1 and Listing 1.2, binary and multi-way plans
exhibit opposite behaviors in terms of total execution time. In high-selective
queries composed of very selective triple patterns, multi-way plans are able to
independently merge results from different triple patterns. Contrary, in binary
plans, intermediate results are passed through multiple operators in a query plan;
5 https://www.highcharts.com/

https://www.highcharts.com/


4 Mikhail Galkin et al.

thus, the query engine needs to wait until all the tuples arrive and joins are per-
formed. This negatively impacts on the execution time as observed in Fig. 1b.
On the other hand, in low selective queries, binary plans are built in a way, that
nested loop joins can be used to produce instantiations that drastically reduce
the amount of intermediate results and speed up execution time. In contrast,
SMJoin works under the assumption of zero knowledge about the cardinality
of the triple pattern fragments, and evaluates every low selective triple pattern
independently; thus, it requires a long time to collect all the results.
Effects on First Produced Result time. The attendees will observe the im-
pact and benefits of producing results incrementally. We will demonstrate that
independently of the selectivity of the queries, i.e., low and high, both types of
plans produce the first result almost at the same time.
Effects on Continuous results yield. The goal of this use case is to show
the effects and benefits of the continuous behavior of a query engine. Attendees
will be able to visualize the number of results produced over a period of time.
More importantly, they will observe that independently of the number of inter-
mediate results generated during the execution of binary and multi-join plans,
query answers are produced at almost the same rates. However, because binary
plans are able to utilize nested loop joins and drastically reduce the number of
intermediate results, binary plans are faster than multi-join plans over time.

4 Conclusions

BatWAn provides a visual comparison how join operators and query plans af-
fect the performance of a SPARQL query engine. Particularly, BatWAn shows a
trade-off between binary and multi-way join operators in three use cases. Atten-
dees will be able to explore all the use cases, understand why query plans play
an important role in a query engine performance, and observe how the contin-
uous behavior of a query engine allows for overcoming adverse query execution
conditions like a large number of intermediate results or sub-optimal query plans.

References

1. M. Acosta and M. Vidal. Networks of linked data eddies: An adaptive web query
processing engine for RDF data. In 14th ISWC, USA, pages 111–127, 2015.

2. M. Acosta, M. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus. ANAPSID: an
adaptive query processing engine for SPARQL endpoints. In ISWC, pages 18–34,
2011.

3. A. Deshpande, Z. G. Ives, and V. Raman. Adaptive query processing. Foundations
and Trends in Databases, 1(1):1–140, 2007.

4. M. Galkin, K. Endris, M. Acosta, D. Collarana, M. Vidal, and S. Auer. Smjoin: A
multi-way join operator for sparql queries. In 13th SEMANTICS, 2017, Accepted
for publication.

5. T. Urhan and M. J. Franklin. Xjoin: A reactively-scheduled pipelined join operator.
IEEE Data Eng. Bull., 23(2):27–33, 2000.


	BatWAn: A Binary and Multi-Way Query Plan Analyzer
	Mikhail Galkin, Maria-Esther Vidal
	Introduction
	The BatWAn Architecture
	Demonstration of Use Cases
	Conclusions



