
Inconsistency-tolerant Forgetting in DL-lite

Peng Xiao, Kewen Wang, and Zhe Wang

Griffith University, Australia

1 Introduction

In ontology engineering, it is essential to develop techniques for module extraction,
ontology reuse and ontology comparison. Since it was introduced in DL-Lite [1], for-
getting has become into a major method of extracting modules in DL ontologies. It
has been applied in some other domains such as ontology comparison [2]. Given a
(consistent) ontology K and a set of concepts and roles F , the result of forgetting is
a new ontology K′ that does not contain symbols in F and preserves certain reason-
ing or query answering tasks. In existing approaches, forgetting is defined for only
consistent ontologies. However, ontologies can be error-prone and inconsistent.

To our best knowledge, the problem of establishing a framework for inconsistent
ontologies has not been investigated yet.

In order to provide a definition of forgetting for a possibly inconsistent DL on-
tology, we could first repair it and then perform standard forgetting on the repaired
ontology. However, there are some issues with this naive approach. In particular, it
can give unwanted results for some ontologies.

Example 1. Let K = 〈T ,A〉, where T = {A v D,B v C,A v ¬B} and A =
{A(a), B(a)}. Then K has two repairs (or maximal consistent components) {A(a)}
and {B(a)}.

The forgetting results ofB in these repairs areK1 = 〈T ′, {A(a)}〉,K2 = 〈T ′, {C(a)}〉,
respectively, where T ′ = {A v D}. Under the semantics IAR for inconsistency-
tolerant querying, K 6|=IAR C(a), K 6|=AR C(a), and K |=CAR D(a). Apparently,
these querying results are not satisfied in K1 or K2.

In this paper, we propose a general framework of forgetting for inconsistent on-
tologies and study its properties. Then we present an algorithm for computing the
forgetting and its implementation based on the graph database system Neo4j. Our
experimental results show that the system prototype is efficient and able to compute
the result of large inconsistent ontologies in seconds or at most one minute.

2 Preliminaries

DL-lite An ontology in DL-lite is a pair K = 〈T ,A〉, where T is a set of inclusion
axioms and A is a set of assertions. The concepts and roles of DL-litecore are defined
by

B → A | ∃R, R→ P | P−, C → B | ¬B

where A is a concept name and R is a role name.

An inclusion axiom in DL-litecore is of the form B v C. An assertion is of the
form A(a) or R(a, b), where a and b are individuals.

The semantics of DL-lite is omitted here.

Inconsistency-tolerant query answering We consider four inconsistency-tolerant se-
mantics AR, IAR, CAR, ICAR [5]. For a possibly inconsistent pair of a TBox T and
an ABox A, a repair A′ of A w.r.t. T is a maximal subset of A such that T ∪ A′ is
consistent. Let repairT (A) consist of all the repairs of A w.r.t. T , and clcT (A) consist
of all the ABox assertions α s.t. T ∪ A′ |= α for some A′ ∈ repairT (A). The entail-
ment of a Boolean conjunctive query (BCQ) q according to a inconsistency-tolerant
semantics γ is defined in Table 2.

γ T ∪ A |=γ q if

AR for each A′ ∈ repairT (A), T ∪ A′ |= q

IAR T ∪
⋂
A′∈repairT (A) A

′ |= q

CAR for each A′ ∈ repairT (clcT (A)), T ∪ A′ |= q

ICAR T ∪
⋂
A′∈repairT (clcT (A)) A

′ |= q

Table 1. Inconsistency-tolerant semantics for query answering

3 Inconsistency-tolerant Forgetting

In this section, we introduce a definition of forgetting for inconsistent KBs and present
two useful properties. Our definition is quite general and actually applies to any DLs.

The signature of a TBox T , denoted sig(T) is the set of concept names and role
names that occur in T . This notion extends to TBox axioms, ABox assertions, ABoxes
and KBs. As with inconsistency-tolerant query answering approaches, we assume the
TBox is consistent. For a DL L and a signature Σ, TBox T ′ is a result of L-forgetting
about Σ in T , if T ′ |= α iff T |= α for each TBox axiom α in L over sig(T) \Σ.

Definition 1. For a DL L, a (possible inconsistent) KB K = T ∪A in L, a signature
Σ and an inconsistency-tolerant semantics γ, a consistent KB K′ = T ′ ∪ A′ is a
result of γ-forgetting about Σ in K if (1) sig(K′) ⊆ sig(K) \ Σ, (2) T ′ is a result of
L-forgetting about Σ in T , and (3) for any BCQ q over sig(K)\Σ, K′ |= q iff K |=γ q.

A result of γ-forgetting is a consistent KB that has exactly the same logical con-
sequences (i.e., TBox axioms and BCQs) as the initial KB (under γ semantics) over
the remaining signature. The definition does not suggest the existence of forgetting.
In fact it is well known that L-forgetting does not always exist for basic DLs such as
EL and ALC. Yet we show that γ-forgetting always exists for DL-Litecore.

Theorem 1. For a KB K in DL-litecore and a signature Σ, a result of γ-forgetting
about Σ in K exists for any inconsistency-tolerant semantics γ.

For DL-litecore KBs, it is efficient to compute their IAR and ICAR forgettings.

Theorem 2. In DL-Litecore, the computation of γ-forgetting is in P for γ being IAR
or ICAR with respect to data complexity.

The intuition behind this result is that forgetting under IAR and ICAR can be
computed by removing all the conflicts (i.e., facts that lead to inconsistency) from the
KB and then perform the standard definition of forgetting for consistent KBs. These
two steps can be done in polynomial time.

4 Implementation and Experimental Results

Because of the linear property of axioms in DL-litecore, DL-litecore KBs can be stored
in directed binary graphs, thus some reasoning tasks can be naturally captured by
traversals of such graphs. We have implemented a prototype system with Neo4j1

for computing IAR concept forgetting in DL-litecore, using a graph-based algorithm.
Specifically, given a DL-litecore KB K, and a set Σ of concepts to forget from K,
we first transfer K into a directed graph GK where each node of GK represents a
general concept or an individual of K, and each edge of GK represents an inclusion or
membership assertion of K [4]. Then the graph is processed in two steps:

1. For every pair of contradicting concepts in GK, we calculate individual nodes
that have access to both of them, thus we obtain all the membership edges that
represent conflicts of K, which are then removed from GK.

2. For nodes representing concepts in Σ, we build edges between their predecessors
and successors, and then remove all edges related to them.

C

B

A

¬D

∃R

∃S

a

b

D C

B

A

¬D

∃R

∃S

a

b

D

Fig. 1. (left) A DL-litecore KB stored in a graph GK (right) GK after IAR Forgetting about
{B,C}

We use a modified version of LUBM with auto-generated inconsistent ABox data
[3] as our benchmark. Different sets of concept names with size of 40 are randomly

1 https://neo4j.com/

selected to be forgot from the KBs in the modified LUBM, average times that are
taken by Step 1, Step 2 and the whole process, and sizes of the results of forgetting
are recorded. All experiments are conducted on a server with Intel Xeon E5-1603 2.80
GHz CPU and 16GB of RAM, running Linux mint 17 OS, and Java 1.8 with 6GB.

Some experimental results are shown in Table 4, where Amn denotes an ABox
containing the data of n universities and inconsistencies added with probability of m.

For the largest ABox with up to 2 million assertions, our algorithm can still solve
the problem in around one minute. In all cases, the size of the resulting KB is consid-
erably larger than the original one, which is not surprising because a large number of
concepts related to facts are forgotten. We can also see that the ratio of inconsistencies
contributes little to the cost of computation.

Abox data original size forgetting size step 1 (s) step 2 (s) Total (s)

A15e−4
20 1982922 2630679 52.6 10.8 63.4

A5e−2
20 2014129 2651328 53.7 11.2 64.9

A2e−1
20 2103366 2736531 57.3 9.9 67.2

Table 2. IAR-forgetting of LUBM KBs

5 Future Issues

We plan to adapt the proposed approach to some other non-standard reasoning sup-
ports for ontologies, such as query explanation (abduction) [6].

Acknowledgement

This work was partially supported by the Australian Research Council (ARC) under
grant DP130102302.

References

1. Wang, Z., Wang, K., Topor, R., Pan, J. Z. Forgetting concepts in DL-Lite. In Proc. 5th
ESWC, pages 245-257, 2008.

2. Kontchakov, R., Wolter, F., Zakharyaschev, M. Logic-based ontology comparison and
module extraction, with an application to DL-Lite. Artif. Intell., 174:1093–1141, 2010.

3. Bienvenu, M., Bourgaux, C., Goasdoué, F. Querying inconsistent description logic knowl-
edge bases under preferred repair semantics. In Proc. 28th AAAI, pages 996–1002, 2014.

4. Qi, G., Wang, Z., Wang, K., Fu, X., Zhuang, Z. Approximating model-based ABox
revision in DL-Lite: Theory and Practice. In Proc. 29th AAI, pages 254–260, 2015.

5. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M. Inconsistency-tolerant semantics for
description logics. In Proc. 4th RR, pages 103–117, 2010.

6. Du, J., Wang, K., Shen, Y. D. Towards tractable and practical ABox abduction over
inconsistent description logic ontologies. In Proc. 29th AAAI, pages 1489–1495, 2015.

